Suppr超能文献

基于高效神经网络的大鼠发情周期测定。

Determination of the rat estrous cycle vased on EfficientNet.

作者信息

Pu Xiaodi, Liu Longyi, Zhou Yonglai, Xu Zihan

机构信息

Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China.

Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, China.

出版信息

Front Vet Sci. 2024 Jul 23;11:1434991. doi: 10.3389/fvets.2024.1434991. eCollection 2024.

Abstract

In the field of biomedical research, rats are widely used as experimental animals due to their short gestation period and strong reproductive ability. Accurate monitoring of the estrous cycle is crucial for the success of experiments. Traditional methods are time-consuming and rely on the subjective judgment of professionals, which limits the efficiency and accuracy of experiments. This study proposes an EfficientNet model to automate the recognition of the estrous cycle of female rats using deep learning techniques. The model optimizes performance through systematic scaling of the network depth, width, and image resolution. A large dataset of physiological data from female rats was used for training and validation. The improved EfficientNet model effectively recognized different stages of the estrous cycle. The model demonstrated high-precision feature capture and significantly improved recognition accuracy compared to conventional methods. The proposed technique enhances experimental efficiency and reduces human error in recognizing the estrous cycle. This study highlights the potential of deep learning to optimize data processing and achieve high-precision recognition in biomedical research. Future work should focus on further validation with larger datasets and integration into experimental workflows.

摘要

在生物医学研究领域,由于大鼠妊娠期短且繁殖能力强,它们被广泛用作实验动物。准确监测发情周期对于实验的成功至关重要。传统方法耗时且依赖专业人员的主观判断,这限制了实验的效率和准确性。本研究提出了一种EfficientNet模型,利用深度学习技术自动识别雌性大鼠的发情周期。该模型通过系统地缩放网络深度、宽度和图像分辨率来优化性能。使用来自雌性大鼠的大量生理数据数据集进行训练和验证。改进后的EfficientNet模型有效地识别了发情周期的不同阶段。与传统方法相比,该模型展示了高精度的特征捕捉并显著提高了识别准确率。所提出的技术提高了实验效率并减少了发情周期识别中的人为误差。本研究突出了深度学习在生物医学研究中优化数据处理并实现高精度识别的潜力。未来的工作应侧重于使用更大的数据集进行进一步验证并整合到实验工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0580/11306968/e5beeb58faf3/fvets-11-1434991-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验