Yuan Hui, Cazade Pierre-Andre, Yuan Chengqian, Xue Bin, Kumar Vijay Bhooshan, Yang Rusen, Finkelstein-Zuta Gal, Gershon Lihi, Lahav Maoz, Rencus-Lazar Sigal, Cao Yi, Levy Davide, Thompson Damien, Gazit Ehud
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
ACS Mater Lett. 2024 Jul 23;6(8):3824-3833. doi: 10.1021/acsmaterialslett.4c00665. eCollection 2024 Aug 5.
Short peptides are attractive building blocks for the fabrication of self-assembled materials with significant biological, chemical, and physical properties. The microscopic and macroscopic properties of assemblies are usually closely related to the dimensionality of formed hydrogen bond networks. Here, two completely different supramolecular architectures connected by distinct hydrogen bond networks were obtained by simply adding a hydroxyl group to switch from cyclo-tryptophan-alanine (cyclo-WA) to cyclo-tryptophan-serine (cyclo-WS). While hydroxyl-bearing cyclo-WS molecules provided an additional hydrogen bond donor that links to adjacent molecules, forming a rigid three-dimensional network, cyclo-WA arranged into a water-mediated zipper-like structure with a softer two-dimensional layer template. This subtle alteration resulted in a 14-fold enhancement of Young's modulus values in cyclo-WS compared to cyclo-WA. Both cyclo-dipeptides exhibit biocompatibility, high fluorescence, and piezoelectricity. The demonstrated role of dimensionality of hydrogen bond networks opens new avenues for rational design of materials with precise morphologies and customizable properties for bioelectronic applications.
短肽是用于制造具有重要生物学、化学和物理性质的自组装材料的有吸引力的构建块。组装体的微观和宏观性质通常与形成的氢键网络的维度密切相关。在这里,通过简单地添加一个羟基,从环色氨酸-丙氨酸(cyclo-WA)转变为环色氨酸-丝氨酸(cyclo-WS),获得了由不同氢键网络连接的两种完全不同的超分子结构。含羟基的cyclo-WS分子提供了一个额外的氢键供体,该供体与相邻分子相连,形成一个刚性的三维网络,而cyclo-WA则排列成具有较软二维层模板的水介导拉链状结构。这种细微的改变导致cyclo-WS的杨氏模量值比cyclo-WA提高了14倍。两种环二肽都表现出生物相容性、高荧光性和压电性。氢键网络维度所展示的作用为合理设计具有精确形态和可定制性质的材料开辟了新途径,以用于生物电子应用。