Suppr超能文献

用于增强性能生物电子学的电解质门控晶体管。

Electrolyte-gated transistors for enhanced performance bioelectronics.

作者信息

Torricelli Fabrizio, Adrahtas Demetra Z, Bao Zhenan, Berggren Magnus, Biscarini Fabio, Bonfiglio Annalisa, Bortolotti Carlo A, Frisbie C Daniel, Macchia Eleonora, Malliaras George G, McCulloch Iain, Moser Maximilian, Nguyen Thuc-Quyen, Owens Róisín M, Salleo Alberto, Spanu Andrea, Torsi Luisa

机构信息

Department of Information Engineering, University of Brescia, Brescia, Italy.

Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.

出版信息

Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00065-8. Epub 2021 Oct 7.

Abstract

Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.

摘要

电解质门控晶体管(EGT)能够将生物和生化输入转换为放大的电信号,并在水性环境中稳定运行,已成为生物电子学的基本构建模块。在本入门文章中,描述了不同的EGT架构及其功能运行的基本机制,深入介绍了关键实验,包括必要的数据分析和验证。介绍并比较了EGT结构中使用的几种有机和无机材料以及用于优化实验设计的不同制造方法。综述了集成到EGT中或与EGT接口的功能性生物层和/或生物系统,包括自组织和自组装策略。讨论了相关且有前景的应用,包括二维和三维细胞监测、超灵敏生物传感器、电生理学、突触和神经形态生物接口、假肢和机器人技术。还探讨了其优点、局限性和可能的优化方法。最后,讨论了当前的问题以及进一步发展和应用的未来方向。

相似文献

3
Conjugated Polymers in Bioelectronics.共轭聚合物在生物电子学中的应用
Acc Chem Res. 2018 Jun 19;51(6):1368-1376. doi: 10.1021/acs.accounts.7b00624. Epub 2018 Jun 6.
4
Functionalized Organic Thin Film Transistors for Biosensing.用于生物传感的功能化有机薄膜晶体管。
Acc Chem Res. 2019 Feb 19;52(2):277-287. doi: 10.1021/acs.accounts.8b00448. Epub 2019 Jan 8.
6
Emerging electrolyte-gated transistors for neuromorphic perception.用于神经形态感知的新型电解质门控晶体管。
Sci Technol Adv Mater. 2023 Jan 11;24(1):2162325. doi: 10.1080/14686996.2022.2162325. eCollection 2023.
8
Electrolyte-gated transistors for organic and printed electronics.用于有机和印刷电子的电解质门控晶体管。
Adv Mater. 2013 Apr 4;25(13):1822-46. doi: 10.1002/adma.201202790. Epub 2012 Dec 2.

引用本文的文献

5
Single-transistor organic electrochemical neurons.单晶体管有机电化学神经元。
Nat Commun. 2025 May 9;16(1):4334. doi: 10.1038/s41467-025-59587-4.

本文引用的文献

1
The role of chemical design in the performance of organic semiconductors.化学设计在有机半导体性能中的作用。
Nat Rev Chem. 2020 Feb;4(2):66-77. doi: 10.1038/s41570-019-0152-9. Epub 2020 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验