Suppr超能文献

无监督机器学习凸显了胃肠脑相互作用障碍亚型划分的挑战。

Unsupervised machine learning highlights the challenges of subtyping disorders of gut-brain interaction.

机构信息

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

High-Value Nutrition National Science Challenge, Auckland, New Zealand.

出版信息

Neurogastroenterol Motil. 2024 Dec;36(12):e14898. doi: 10.1111/nmo.14898. Epub 2024 Aug 9.

Abstract

BACKGROUND

Unsupervised machine learning describes a collection of powerful techniques that seek to identify hidden patterns in unlabeled data. These techniques can be broadly categorized into dimension reduction, which transforms and combines the original set of measurements to simplify data, and cluster analysis, which seeks to group subjects based on some measure of similarity. Unsupervised machine learning can be used to explore alternative subtyping of disorders of gut-brain interaction (DGBI) compared to the existing gastrointestinal symptom-based definitions of Rome IV.

PURPOSE

This present review aims to familiarize the reader with fundamental concepts of unsupervised machine learning using accessible definitions and provide a critical summary of their application to the evaluation of DGBI subtyping. By considering the overlap between Rome IV clinical definitions and identified clusters, along with clinical and physiological insights, this paper speculates on the possible implications for DGBI. Also considered are algorithmic developments in the unsupervised machine learning community that may help leverage increasingly available omics data to explore biologically informed definitions. Unsupervised machine learning challenges the modern subtyping of DGBI and, with the necessary clinical validation, has the potential to enhance future iterations of the Rome criteria to identify more homogeneous, diagnosable, and treatable patient populations.

摘要

背景

无监督机器学习描述了一系列强大的技术,旨在识别未标记数据中的隐藏模式。这些技术可以大致分为降维和聚类分析,降维技术旨在通过转换和组合原始测量集来简化数据,而聚类分析则旨在根据某种相似性度量对受试者进行分组。与现有的基于胃肠道症状的罗马 IV 定义相比,无监督机器学习可用于探索肠道-脑相互作用障碍(DGBI)的替代细分。

目的

本综述旨在使用易于理解的定义使读者熟悉无监督机器学习的基本概念,并对其在评估 DGBI 细分中的应用进行批判性总结。通过考虑罗马 IV 临床定义与已识别聚类之间的重叠,以及临床和生理学见解,本文推测了这对 DGBI 的可能影响。还考虑了无监督机器学习领域中的算法发展,这些发展可能有助于利用越来越多的可用组学数据来探索基于生物学的定义。无监督机器学习对 DGBI 的现代细分提出了挑战,并且具有必要的临床验证,有可能增强罗马标准的未来迭代,以识别更同质、可诊断和可治疗的患者群体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验