Suppr超能文献

用于烃类在冲击压缩下大规模模拟的原子团簇展开势

Atomic cluster expansion potential for large scale simulations of hydrocarbons under shock compression.

作者信息

Willman Jonathan T, Perriot Romain, Ticknor Christopher

机构信息

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

J Chem Phys. 2024 Aug 14;161(6). doi: 10.1063/5.0213560.

Abstract

We present an Atomic Cluster Expansion (ACE) machine learned potential developed for high-fidelity atomistic simulations of hydrocarbons, targeting pressures and temperatures near and above supercritical fluid regimes for molecular fluids. A diverse set of stoichiometries were covered in training, including 1:0 (pure carbon), 1:4 (methane), and 1:1 (benzene), and rich bonding environments sampled at supercritical temperatures, hydrogen rich, reactive mixtures where metastable stoichiometries arise, including 1:2 (ethylene) and 1:3 (ethane). A high-fidelity training database was constructed by performing large-scale quantum molecular dynamic simulations [density functional theory (DFT) MD] of diamond, graphite, methane, and benzene. A novel approach to selecting structures from DFT MD is also presented, which allows for the rapid selection of unique DFT MD frames from complex trajectories. Comparisons to DFT and experimental data demonstrate that the presented ACE potential accurately reproduces isotherms, carbon melting curves, radial distribution functions, and shock Hugoniots for carbon and hydrocarbon systems for pressures up to 100 GPa and temperatures up to 6000 K for hydrocarbon systems and up to 9000 K for pure carbon systems. This work delivers a potential that can be used for accurate, large-scale simulations of shocked hydrocarbons and demonstrates a methodology for fitting and validating machine learning interatomic potentials to complex molecular environments, which can be applied to energetic materials in future works.

摘要

我们展示了一种用于烃类高保真原子模拟的原子团簇展开(ACE)机器学习势,其目标是接近和高于分子流体超临界流体区域的压力和温度。训练涵盖了多种化学计量比,包括1:0(纯碳)、1:4(甲烷)和1:1(苯),并在超临界温度下对丰富的键合环境进行了采样,包括富含氢的、产生亚稳化学计量比的反应性混合物,如1:2(乙烯)和1:3(乙烷)。通过对金刚石、石墨、甲烷和苯进行大规模量子分子动力学模拟[密度泛函理论(DFT)MD]构建了一个高保真训练数据库。还提出了一种从DFT MD中选择结构的新方法,该方法允许从复杂轨迹中快速选择独特的DFT MD帧。与DFT和实验数据的比较表明,所提出的ACE势能够准确再现碳和烃类系统的等温线、碳熔化曲线、径向分布函数以及冲击Hugoniots,对于烃类系统,压力可达100 GPa,温度可达6000 K;对于纯碳系统,温度可达9000 K。这项工作提供了一种可用于精确大规模模拟冲击烃类的势,并展示了一种将机器学习原子间势拟合和验证到复杂分子环境的方法,该方法可在未来工作中应用于含能材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验