Suppr超能文献

为β-GaO热性质的分子模拟开发的机器学习原子间势。

Machine learning interatomic potential developed for molecular simulations on thermal properties of β-GaO.

作者信息

Liu Yuan-Bin, Yang Jia-Yue, Xin Gong-Ming, Liu Lin-Hua, Csányi Gábor, Cao Bing-Yang

机构信息

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

出版信息

J Chem Phys. 2020 Oct 14;153(14):144501. doi: 10.1063/5.0027643.

Abstract

The thermal properties of β-GaO can significantly affect the performance and reliability of high-power electronic devices. To date, due to the absence of a reliable interatomic potential, first-principles calculations based on density functional theory (DFT) have been routinely used to probe the thermal properties of β-GaO. DFT calculations can only tackle small-scale systems due to the huge computational cost, while the thermal transport processes are usually associated with large time and length scales. In this work, we develop a machine learning based Gaussian approximation potential (GAP) for accurately describing the lattice dynamics of perfect crystalline β-GaO and accelerating atomic-scale simulations. The GAP model shows excellent convergence, which can faithfully reproduce the DFT potential energy surface at a training data size of 32 000 local atomic environments. The GAP model is then used to predict ground-state lattice parameters, coefficients of thermal expansion, heat capacity, phonon dispersions at 0 K, and anisotropic thermal conductivity of β-GaO, which are all in excellent agreement with either the DFT results or experiments. The accurate predictions of phonon dispersions and thermal conductivities demonstrate that the GAP model can well describe the harmonic and anharmonic interactions of phonons. Additionally, the successful application of our GAP model to the phonon density of states of a 2500-atom β-GaO structure at elevated temperature indicates the strength of machine learning potentials to tackle large-scale atomic systems in long molecular simulations, which would be almost impossible to generate with DFT-based molecular simulations at present.

摘要

β-GaO的热性能会显著影响高功率电子器件的性能和可靠性。迄今为止,由于缺乏可靠的原子间势,基于密度泛函理论(DFT)的第一性原理计算已被常规用于探究β-GaO的热性能。由于计算成本巨大,DFT计算只能处理小规模系统,而热输运过程通常与较大的时间和长度尺度相关。在这项工作中,我们开发了一种基于机器学习的高斯近似势(GAP),用于准确描述完美晶体β-GaO的晶格动力学并加速原子尺度模拟。GAP模型显示出出色的收敛性,在32000个局部原子环境的训练数据量下能够忠实地再现DFT势能面。然后,GAP模型被用于预测β-GaO的基态晶格参数、热膨胀系数、热容、0K时的声子色散以及各向异性热导率,这些结果与DFT结果或实验结果都非常吻合。对声子色散和热导率的准确预测表明,GAP模型能够很好地描述声子的谐波和非谐波相互作用。此外,我们的GAP模型在高温下对2500个原子的β-GaO结构的声子态密度的成功应用,表明了机器学习势在处理长时间分子模拟中的大规模原子系统方面的优势,而这在目前基于DFT的分子模拟中几乎是不可能实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验