Suppr超能文献

金属单硫属化物GaX和Janus GaXY(X、Y = S、Se和Te)的谷相关电子性质

Valley-Dependent Electronic Properties of Metal Monochalcogenides GaX and Janus GaXY (X, Y = S, Se, and Te).

作者信息

Kim Junghwan, Kim Yunjae, Sung Dongchul, Hong Suklyun

机构信息

Department of Physics, Graphene Research Institute, Quantum Information Science and Technology Center, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Nanomaterials (Basel). 2024 Jul 31;14(15):1295. doi: 10.3390/nano14151295.

Abstract

Two-dimensional (2D) materials have shown outstanding potential for new devices based on their interesting electrical properties beyond conventional 3D materials. In recent years, new concepts such as the valley degree of freedom have been studied to develop valleytronics in hexagonal lattice 2D materials. We investigated the valley degree of freedom of GaX and Janus GaXY (X, Y = S, Se, Te). By considering the spin-orbit coupling (SOC) effect in the band structure calculations, we identified the Rashba-type spin splitting in band structures of Janus GaSSe and GaSTe. Further, we confirmed that the Zeeman-type spin splitting at the K and K' valleys of GaX and Janus GaXY show opposite spin contributions. We also calculated the Berry curvatures of GaX and Janus GaXY. In this study, we find that GaX and Janus GaXY have a similar magnitude of Berry curvatures, while having opposite signs at the K and K' points. In particular, GaTe and GaSeTe have relatively larger Berry curvatures of about 3.98 Å and 3.41 Å, respectively, than other GaX and Janus GaXY.

摘要

二维(2D)材料因其超越传统三维材料的有趣电学特性,在新型器件方面展现出了卓越的潜力。近年来,诸如谷自由度等新概念已被研究,以在六角晶格二维材料中发展谷电子学。我们研究了GaX和Janus GaXY(X、Y = S、Se、Te)的谷自由度。通过在能带结构计算中考虑自旋轨道耦合(SOC)效应,我们在Janus GaSSe和GaSTe的能带结构中识别出了Rashba型自旋分裂。此外,我们证实了GaX和Janus GaXY在K和K'谷处的塞曼型自旋分裂表现出相反的自旋贡献。我们还计算了GaX和Janus GaXY的贝里曲率。在本研究中,我们发现GaX和Janus GaXY具有相似大小的贝里曲率,而在K和K'点处符号相反。特别是,GaTe和GaSeTe分别具有约3.98 Å和3.41 Å的相对较大的贝里曲率,比其他GaX和Janus GaXY更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153a/11313789/a9b12870f34d/nanomaterials-14-01295-g001.jpg

相似文献

1
Valley-Dependent Electronic Properties of Metal Monochalcogenides GaX and Janus GaXY (X, Y = S, Se, and Te).
Nanomaterials (Basel). 2024 Jul 31;14(15):1295. doi: 10.3390/nano14151295.
2
Janus structures of the polymorph of gallium monochalcogenides: first-principles examination of GaXY (X/Y = S, Se, Te) monolayers.
RSC Adv. 2023 Apr 18;13(18):12153-12160. doi: 10.1039/d3ra01079a. eCollection 2023 Apr 17.
3
Janus TiXY Monolayers with Tunable Berry Curvature.
J Phys Chem Lett. 2019 Dec 5;10(23):7426-7432. doi: 10.1021/acs.jpclett.9b02853. Epub 2019 Nov 19.
6
Theoretical prediction of valley spin splitting in two-dimensional Janus MSiGeZ (M = Cr and W; Z = N, P, and As).
Phys Chem Chem Phys. 2023 Jun 15;25(23):15676-15682. doi: 10.1039/d3cp00849e.
7
Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te).
Nanoscale Adv. 2021 Sep 14;3(23):6608-6616. doi: 10.1039/d1na00334h. eCollection 2021 Nov 24.
8
The study of spin-valley coupling in atomically thin group VI transition metal dichalcogenides.
Adv Mater. 2014 Aug 20;26(31):5504-7. doi: 10.1002/adma.201305367. Epub 2014 Apr 6.
9
Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers.
Int J Mol Sci. 2022 Jul 10;23(14):7629. doi: 10.3390/ijms23147629.
10
Large valley splitting induced by spin-orbit coupling effects in monolayer WNSCl.
Phys Chem Chem Phys. 2024 Mar 13;26(11):8945-8951. doi: 10.1039/d3cp04832b.

本文引用的文献

3
Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29335-29343. doi: 10.1021/acsami.0c06149. Epub 2020 Jun 23.
4
Valley-Dependent Spin Transport in Monolayer Transition-Metal Dichalcogenides.
Phys Rev Lett. 2020 Apr 24;124(16):166803. doi: 10.1103/PhysRevLett.124.166803.
5
Janus TiXY Monolayers with Tunable Berry Curvature.
J Phys Chem Lett. 2019 Dec 5;10(23):7426-7432. doi: 10.1021/acs.jpclett.9b02853. Epub 2019 Nov 19.
6
Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS_{2}.
Phys Rev Lett. 2019 Jul 19;123(3):036806. doi: 10.1103/PhysRevLett.123.036806.
7
Investigation of atomic and electronic properties of 2D-MoS/3D-GaN mixed-dimensional heterostructures.
Nanotechnology. 2019 Oct 4;30(40):404002. doi: 10.1088/1361-6528/ab2c16. Epub 2019 Jun 24.
8
Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4135-4140. doi: 10.1073/pnas.1816904116. Epub 2019 Feb 14.
9
Intrinsic Electric Field-Induced Properties in Janus MoSSe van der Waals Structures.
J Phys Chem Lett. 2019 Feb 7;10(3):559-565. doi: 10.1021/acs.jpclett.8b03463. Epub 2019 Jan 23.
10
Symmetry-breaking induced large piezoelectricity in Janus tellurene materials.
Phys Chem Chem Phys. 2019 Jan 17;21(3):1207-1216. doi: 10.1039/c8cp04669g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验