Nandi Pradip, Rawat Ashima, Ahammed Raihan, Jena Nityasagar, De Sarkar Abir
Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab -160062, India.
Nanoscale. 2021 Mar 18;13(10):5460-5478. doi: 10.1039/d0nr07027k.
Inversion symmetry in the 1T-phase of pristine dichalcogenide monolayer MX2 (M = Ge, Sn; X = S, Se) is broken in their Janus structures, MXY (M = Ge, Sn; X ≠ Y = S, Se), which induces an in-plane piezoelectric coefficient, d22 = 4.09 (2.15) pm V-1 and a shear piezoelectric coefficient, d15 = 7.90 (13.68) pm V-1 in the GeSSe (SnSSe) monolayer. High flexibility arising from the small Young's modulus (60-70 N m-1) found in these Group-IV(A) Janus monolayers makes them suitable for large-scale strain engineering. Application of 7% uniaxial tensile strain increases d22 and d15 colossally to 267.07 pm V-1 and 702.34 pm V-1, respectively, thereby reaching the level of bulk piezoelectric perovskite materials. When the Janus GeSSe monolayers are stacked to form a van der Waals (vdW) homo-bilayer, d22 lies between 19.87 and 73.26 pm V-1, while d15 falls into the range between 83.01 and 604.34 pm V-1, depending on the stacking order. The chalcogen exchange energies and overall stabilities of the monolayers and bilayers confirm the feasibility of their experimental synthesis. Moreover, hole mobility in the GeSSe monolayer is greater than the electron mobility along its zigzag directions (μe = 883 cm2 V-1 s-1 and μh = 1134 cm2 V-1 s-1). Therefore, the semiconducting, flexible, and piezoelectric Janus GeSSe monolayer and bilayers are immensely promising for futuristic applications in energy harvesting, nanopiezotronic field-effect transistors, atomically thin sensors, shear/torsion actuators, transducers, self-powered circuits in nanorobotics, and electromechanical memory devices, and biomedical and other nanoelectronic applications.
在原始二硫属化物单层MX2(M = Ge,Sn;X = S,Se)的1T相中,其反演对称性在其Janus结构MXY(M = Ge,Sn;X≠Y = S,Se)中被打破,这在GeSSe(SnSSe)单层中诱导出平面内压电系数d22 = 4.09(2.15)pm V-1和剪切压电系数d15 = 7.90(13.68)pm V-1。这些IV(A)族Janus单层中发现的小杨氏模量(60 - 70 N m-1)带来的高柔韧性使其适用于大规模应变工程。施加7%的单轴拉伸应变会使d22和d15大幅增加至分别为267.07 pm V-1和702.34 pm V-1,从而达到块状压电钙钛矿材料的水平。当Janus GeSSe单层堆叠形成范德华(vdW)同质双层时,d22介于19.87和73.26 pm V-1之间,而d15则根据堆叠顺序落入83.01和604.34 pm V-1的范围内。单层和双层的硫属元素交换能及整体稳定性证实了它们实验合成的可行性。此外,GeSSe单层中的空穴迁移率大于沿其锯齿方向的电子迁移率(μe = 883 cm2 V-1 s-1和μh = 1134 cm2 V-1 s-1)。因此,半导体、柔性且压电的Janus GeSSe单层和双层在未来能量收集、纳米压电场效应晶体管、原子级薄传感器、剪切/扭转致动器、换能器、纳米机器人中的自供电电路以及机电存储设备,以及生物医学和其他纳米电子应用中极具前景。