Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China.
Tangshan Research Institute, Beijing Institute of Technology, 063611 Hebei, China.
ACS Synth Biol. 2024 Sep 20;13(9):2820-2832. doi: 10.1021/acssynbio.4c00241. Epub 2024 Aug 9.
Plasmid-mediated antibiotic-free fermentation holds significant industrial potential. However, the requirements for host elements and energy during plasmid inheritance often cause cell burden, leading to plasmid loss and reduced production. The stable maintenance of plasmids is primarily achieved through a complex mechanism, making it challenging to rationally design plasmid-stabilizing strains and characterize the associated genetic factors. In this study, we introduced a fluorescence-based high-throughput method and successfully screened plasmid-stabilizing strains from the genomic fragment-deletion strains of MG1655 and 168. The application of Δ50 in antibiotic-free fermentation increased the alanine titer 2.9 times. The enhanced plasmid stability in Δ50 was attributed to the coordinated deletion of genes involved in plasmid segregation and replication control, leading to improved plasmid maintenance and increased plasmid copy number. The increased plasmid stability of Δ was due to the deletion of the phage SPP1 surface receptor gene , resulting in minimized sporulation, improved plasmid segregational stability and host adaptation. Antibiotic-free fermentation results showed that strain Δ exhibited a 61.99% higher acetoin titer compared to strain 168, reaching 3.96 g/L. When used for the fermentation of the downstream product, 2,3-butanediol, strain Δ achieved an 80.63% higher titer than 168, reaching 14.94 g/L using rich carbon and nitrogen feedstocks. Overall, our work provided a plasmid-stabilizing chassis for and , highlighting their potential for antibiotic-free fermentation of valuable products and metabolic engineering applications.
质粒介导的无抗生素发酵具有重要的工业潜力。然而,质粒遗传过程中对宿主元件和能量的需求常常导致细胞负担过重,导致质粒丢失和产量降低。质粒的稳定维持主要通过复杂的机制实现,因此难以合理设计稳定质粒的菌株并对相关遗传因素进行特征分析。在本研究中,我们引入了一种基于荧光的高通量方法,成功地从 MG1655 和 168 的基因组片段缺失菌株中筛选出稳定质粒的菌株。Δ50 在无抗生素发酵中的应用使丙氨酸产量提高了 2.9 倍。Δ50 中质粒稳定性的增强归因于与质粒分离和复制控制相关的基因的协调缺失,从而提高了质粒的维持能力并增加了质粒拷贝数。Δ 的质粒稳定性增强是由于噬菌体 SPP1 表面受体基因的缺失,导致孢子形成减少,质粒分离稳定性和宿主适应性提高。无抗生素发酵的结果表明,与菌株 168 相比,菌株 Δ 的乙酰基丁酮产量提高了 61.99%,达到 3.96g/L。当用于下游产物 2,3-丁二醇的发酵时,与 168 相比,菌株 Δ 的产量提高了 80.63%,使用丰富的碳氮源达到 14.94g/L。总的来说,我们的工作为 和 提供了稳定质粒的底盘,突出了它们在无抗生素发酵有价值产物和代谢工程应用中的潜力。