Suppr超能文献

干粉吸入器中使用的不同载体:其颗粒特性

Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles.

作者信息

Salústio P J, Amaral M H, Costa P C

机构信息

Research Institute for Medicines (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.

UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal.

出版信息

J Aerosol Med Pulm Drug Deliv. 2024 Dec;37(6):307-327. doi: 10.1089/jamp.2023.0029. Epub 2024 Aug 9.

Abstract

In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation.

摘要

在当代,干粉吸入器(DPI)在肺部和全身性疾病管理中的应用有所增加。这些装置在所用设备和制剂工艺方面都取得了迅速进展。在本综述中,讨论了影响DPI性能的载体物理化学特性,重点关注其形状、形态、尺寸分布、质地、空气动力学直径、密度、水分、颗粒之间的粘附力和分离力、细载体颗粒以及干粉雾化。为了促进活性主要成分在肺部系统深处的沉积,通过应用包括颗粒工程在内的新技术来增强这些因素和表面性质已取得进展。到目前为止,最常用的载体是乳糖,它有一些优点和缺点,但正在研究其他物质和系统以取代它。本综述的最终目的是分析DPI制剂中使用的不同载体或新给药系统的物理化学和机械特性,无论其是否已上市或仍在研究中。

相似文献

1
Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles.
J Aerosol Med Pulm Drug Deliv. 2024 Dec;37(6):307-327. doi: 10.1089/jamp.2023.0029. Epub 2024 Aug 9.
4
Inhaled mannitol for cystic fibrosis.
Cochrane Database Syst Rev. 2018 Feb 9;2(2):CD008649. doi: 10.1002/14651858.CD008649.pub3.
5
Preparation and Study of Erythromycin Dry Powder Inhaler Based on Ternary Complex Structure.
AAPS PharmSciTech. 2025 May 30;26(5):151. doi: 10.1208/s12249-025-03140-5.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Storage and in-use stability of an excipient enhanced growth (EEG) synthetic lung surfactant powder formulation.
Drug Dev Ind Pharm. 2025 Jul;51(7):747-757. doi: 10.1080/03639045.2025.2508845. Epub 2025 May 26.
8
Characterization of Spray-Dried Powders Using a Coated Alberta Idealized Nasal Inlet.
J Aerosol Med Pulm Drug Deliv. 2025 Feb;38(1):1-12. doi: 10.1089/jamp.2024.0029. Epub 2025 Jan 13.

本文引用的文献

1
Lipid-based particle engineering via spray-drying for targeted delivery of antibiotics to the lung.
Int J Pharm. 2023 Jul 25;642:123201. doi: 10.1016/j.ijpharm.2023.123201. Epub 2023 Jul 3.
2
On the Physical Stability of Leucine-Containing Spray-Dried Powders for Respiratory Drug Delivery.
Pharmaceutics. 2023 Jan 28;15(2):435. doi: 10.3390/pharmaceutics15020435.
3
The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics.
Biomedicines. 2022 Oct 26;10(11):2707. doi: 10.3390/biomedicines10112707.
4
Recent developments in lactose blend formulations for carrier-based dry powder inhalation.
Adv Drug Deliv Rev. 2022 Oct;189:114527. doi: 10.1016/j.addr.2022.114527. Epub 2022 Sep 5.
6
Particle engineering in dry powders for inhalation.
Eur J Pharm Sci. 2022 May 1;172:106158. doi: 10.1016/j.ejps.2022.106158. Epub 2022 Mar 4.
7
A real-time and modular approach for quick detection and mechanism exploration of DPIs with different carrier particle sizes.
Acta Pharm Sin B. 2022 Jan;12(1):437-450. doi: 10.1016/j.apsb.2021.06.011. Epub 2021 Jun 21.
8
Excipient Innovation Through Precompetitive Research.
Pharm Res. 2021 Dec;38(12):2179-2184. doi: 10.1007/s11095-021-03157-y. Epub 2021 Dec 20.
9
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations.
Pharmaceutics. 2021 Nov 3;13(11):1855. doi: 10.3390/pharmaceutics13111855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验