Suppr超能文献

心血管成像和介入中的人工智能。

Artificial intelligence in cardiovascular imaging and intervention.

机构信息

Abteilung für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.

Standort Heidelberg-Mannheim, DZHK, Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Heidelberg, Germany.

出版信息

Herz. 2024 Oct;49(5):327-334. doi: 10.1007/s00059-024-05264-z. Epub 2024 Aug 9.

Abstract

Recent progress in artificial intelligence (AI) includes generative models, multimodal foundation models, and federated learning, which enable a wide spectrum of novel exciting applications and scenarios for cardiac image analysis and cardiovascular interventions. The disruptive nature of these novel technologies enables concurrent text and image analysis by so-called vision-language transformer models. They not only allow for automatic derivation of image reports, synthesis of novel images conditioned on certain textual properties, and visual questioning and answering in an oral or written dialogue style, but also for the retrieval of medical images from a large database based on a description of the pathology or specifics of the dataset of interest. Federated learning is an additional ingredient in these novel developments, facilitating multi-centric collaborative training of AI approaches and therefore access to large clinical cohorts. In this review paper, we provide an overview of the recent developments in the field of cardiovascular imaging and intervention and offer a future outlook.

摘要

人工智能(AI)的最新进展包括生成模型、多模态基础模型和联邦学习,它们为心脏图像分析和心血管介入提供了广泛的新型令人兴奋的应用和场景。这些新技术的颠覆性使得所谓的视觉语言转换器模型能够同时进行文本和图像分析。它们不仅允许自动生成图像报告,根据某些文本属性合成新的图像,以及以口头或书面对话的方式进行视觉问答,还可以根据对病理学或感兴趣的数据集的具体描述,从大型数据库中检索医学图像。联邦学习是这些新发展的另一个组成部分,它促进了 AI 方法的多中心协作训练,从而可以访问大型临床队列。在这篇综述论文中,我们提供了心血管成像和介入领域的最新发展概述,并展望了未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验