Nguyen Khanh Duy, Lee Woojoo, Dang Jianchen, Wu Tongyao, Berruto Gabriele, Yan Chenhui, Ip Chi Ian Jess, Lin Haoran, Gao Qiang, Lee Seng Huat, Yan Binghai, Liu Chaoxing, Mao Zhiqiang, Zhang Xiao-Xiao, Yang Shuolong
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
Department of Physics, University of Florida, Gainesville, FL 32611, USA.
Sci Adv. 2024 Aug 9;10(32):eadn5696. doi: 10.1126/sciadv.adn5696.
The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here, we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBiTe. Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but overestimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBiTe. Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics.
长期以来,人们一直预测,通过表面电子,局域磁矩之间的间接交换相互作用会增强磁性拓扑绝缘体(MTIs)中的表面铁磁性,这有助于实现量子反常霍尔效应。这种非常规效应对于确定未来拓扑电子器件的工作温度至关重要。然而,这种机制的实验证实仍然难以捉摸,尤其是在本征MTIs中。在这里,我们将时间分辨光电子能谱与时间分辨磁光克尔效应测量相结合,以阐明本征MTI MnBiTe表面独特的电磁特性。基于二维Ruderman-Kittel-Kasuya-Yosida相互作用的理论模型能够在两倍的误差范围内捕捉到源于表面的交换能隙的初始猝灭,但对体退磁的估计却高估了一个数量级。该机制直接解释了准二维电子态中相当大的能隙以及偶数层MnBiTe中不为零的剩余磁化强度。此外,它导致了与最先进的磁光子晶体相当的高效光致退磁,有望为未来的拓扑电子学实现对磁性和拓扑序的有效操控。