Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR 1033, 69008, Lyon, France; Univ Lyon, Univ Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, 69622, Lyon, France.
Biomechanics Section, Dept. Mechanical Engineering, KU Leuven, Leuven, Belgium.
J Mech Behav Biomed Mater. 2024 Oct;158:106676. doi: 10.1016/j.jmbbm.2024.106676. Epub 2024 Jul 26.
Metastases increase the risk of fracture when affecting the femur. Consequently, clinicians need to know if the patient's femur can withstand the stress of daily activities. The current tools used in clinics are not sufficiently precise. A new method, the CT-scan-based finite element analysis, gives good predictive results. However, none of the existing models were tested for reproducibility. This is a critical issue to address in order to apply the technique on a large cohort around the world to help evaluate bone metastatic fracture risk in patients. The aim of this study is then to evaluate 1) the reproducibility 2) the transposition of the reproduced model to another dataset and 3) the global sensitivity of one of the most promising models of the literature (original model).
The model was reproduced based on the paper describing it and discussion with authors to avoid reproduction errors. The reproducibility was evaluated by comparing the results given in the original model by the original first team (Leuven, Belgium) and the reproduced model made by another team (Lyon, France) on the same dataset of CT-scans of ex vivo femurs. The transposition of the model was evaluated by comparing the results of the reproduced model on two different datasets. The global sensitivity analysis was done by using the Morris method and evaluates the influence of the density calibration coefficient, the segmentation, the orientations and the length of the femur.
The original and reproduced models are highly correlated (r = 0.95), even though the reproduced model gives systematically higher failure loads. When using the reproduced model on another dataset, predictions are less accurate (r with the experimental failure load decreases, errors increase). The global sensitivity analysis showed high influence of the density calibration coefficient (mean variation of failure load of 84 %) and non-negligible influence of the segmentation, orientation and length of the femur (mean variation of failure load between 7 and 10 %).
This study showed that, although being validated, the reproduced model underperformed when using another dataset. The difference in performance depending on the dataset is commonly the cause of overfitting when creating the model. However, the dataset used in the original paper (Sas et al., 2020a) and the Leuven's dataset gave similar performance, which indicates a lesser probability for the overfitting cause. Also, the model is highly sensitive to density parameters and automation of measurement may minimize the uncertainty on failure load. An uncertainty propagation analysis would give the actual precision of such model and improve our understanding of its behavior and is part of future work.
转移瘤会增加股骨骨折的风险。因此,临床医生需要知道患者的股骨是否能承受日常活动的压力。目前在临床上使用的工具不够精确。一种新的方法,基于 CT 扫描的有限元分析,给出了很好的预测结果。然而,现有的模型都没有经过重现性测试。为了在全球范围内应用该技术,帮助评估患者骨转移骨折风险,需要解决这个关键问题。本研究的目的是评估 1)重现性,2)将重现的模型转换到另一个数据集,3)文献中最有前途的模型之一的全局敏感性(原始模型)。
根据描述该模型的论文和与作者的讨论来重现模型,以避免重现错误。通过比较由最初的第一团队(比利时鲁汶)在相同的离体股骨 CT 扫描数据集上给出的原始模型的结果和由另一个团队(法国里昂)制作的重现模型的结果来评估重现性。通过比较重现模型在两个不同数据集上的结果来评估模型的转换。全局敏感性分析采用 Morris 方法,评估密度校准系数、分割、方向和股骨长度的影响。
原始模型和重现模型高度相关(r=0.95),尽管重现模型给出的失败负载系统地更高。当在另一个数据集上使用重现模型时,预测的准确性降低(与实验失败负载的 r 值降低,误差增加)。全局敏感性分析显示,密度校准系数的影响很大(失败负载的平均变化为 84%),股骨的分割、方向和长度的影响不可忽视(失败负载的平均变化在 7%到 10%之间)。
本研究表明,尽管经过验证,但在使用另一个数据集时,重现模型的性能较差。模型创建时,由于数据集的不同,性能的差异通常是过拟合的原因。然而,原始论文(Sas 等人,2020a)和鲁汶数据集使用的数据集给出了相似的性能,这表明过拟合的可能性较小。此外,该模型对密度参数非常敏感,测量的自动化可以最小化失败负载的不确定性。不确定性传播分析将给出该模型的实际精度,并提高我们对其行为的理解,这是未来工作的一部分。