School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia.
School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
J Biol Chem. 2024 Sep;300(9):107653. doi: 10.1016/j.jbc.2024.107653. Epub 2024 Aug 8.
The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through H-N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.
非血红素铁依赖性双氧酶 2-氨基乙硫醇(又名半胱胺)双加氧酶(ADO)最近被鉴定为一种酶氧传感器,通过 N 末端半胱氨酸(Nt-cys)通过 N 去垢途径调节具有 Nt-cys 的蛋白质的稳定性,从而协调细胞对缺氧的变化。它催化 O 依赖性 Nt-cys 亚磺化,促进靶标的蛋白酶体降解。只有少数 ADO 底物得到了验证,包括 G 蛋白信号转导调节剂(RGS)4 和 5,以及促炎细胞因子白细胞介素-32,它们都表现出细胞和/或组织特异性表达模式。相比之下,ADO 广泛表达,表明它可以以 O 依赖性方式调节额外的 Nt-cys 蛋白的稳定性。然而,单个化学基团、活性位点金属、氨基酸组成和球状结构对蛋白质底物结合的作用仍然难以捉摸。为了帮助鉴定新的靶标并研究该系统的潜在生物化学,我们进行了一系列生物物理实验,以研究已建立的 ADO 底物 RGS5 和白细胞介素-32 的结合要求。我们通过表面等离子体响应和酶测定证明,游离的、未经修饰的 Nt-硫醇和 Nt-胺是通过活性位点金属配位与底物结合的关键,Nt-cys 旁边的残基对结合和催化效率有适度影响。此外,我们通过 H-N 异核单量子相干核磁共振滴定表明,RGS5 的球状部分对 ADO 结合的影响有限,相互作用仅限于 N 端。这项工作确定了 ADO 底物结合涉及的关键特征,这将有助于鉴定新的蛋白质靶标,并随后阐明其在低氧适应中的作用。