Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul 03080, Korea.
Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2107993118.
Cellular homeostasis requires the sensing of and adaptation to intracellular oxygen (O) and reactive oxygen species (ROS). The Arg/N-degron pathway targets proteins that bear destabilizing N-terminal residues for degradation by the proteasome or via autophagy. Under normoxic conditions, the N-terminal Cys (Nt-Cys) residues of specific substrates can be oxidized by dioxygenases such as plant cysteine oxidases and cysteamine (2-aminoethanethiol) dioxygenases and arginylated by ATE1 R-transferases to generate Arg-CysO(H) (R-C). Proteins bearing the R-C N-degron are targeted via Lys48 (K48)-linked ubiquitylation by UBR1/UBR2 N-recognins for proteasomal degradation. During acute hypoxia, such proteins are partially stabilized, owing to decreased Nt-Cys oxidation. Here, we show that if hypoxia is prolonged, the Nt-Cys of regulatory proteins can be chemically oxidized by ROS to generate Arg-CysO(H) (R-C), a lysosomal N-degron. The resulting R-C is bound by KCMF1, a N-recognin that induces K63-linked ubiquitylation, followed by K27-linked ubiquitylation by the noncanonical N-recognin UBR4. Autophagic targeting of Cys/N-degron substrates is mediated by the autophagic N-recognin p62/SQTSM-1/Sequestosome-1 through recognition of K27/K63-linked ubiquitin (Ub) chains. This Cys/N-degron-dependent reprogramming in the proteolytic flux is important for cellular homeostasis under both chronic hypoxia and oxidative stress. A small-compound ligand of p62 is cytoprotective under oxidative stress through its ability to accelerate proteolytic flux of K27/K63-ubiquitylated Cys/N-degron substrates. Our results suggest that the Nt-Cys of conditional Cys/N-degron substrates acts as an acceptor of O to maintain both O and ROS homeostasis and modulates half-lives of substrates through either the proteasome or lysosome by reprogramming of their Ub codes.
细胞内稳态需要感知和适应细胞内氧 (O) 和活性氧 (ROS)。Arg/N 降解途径靶向带有不稳定 N 端残基的蛋白质,这些残基通过蛋白酶体或自噬进行降解。在常氧条件下,特定底物的 N 端半胱氨酸 (Nt-Cys) 残基可以被双加氧酶如植物半胱氨酸氧化酶和半胱胺 (2-氨基乙硫醇) 双加氧酶氧化,并被 ATE1 R-转移酶精氨酸化,生成 Arg-CysO(H) (R-C)。带有 R-C N 降解物的蛋白质通过 UBR1/UBR2 N-识别器通过 Lys48 (K48)-连接的泛素化被靶向用于蛋白酶体降解。在急性缺氧期间,由于 Nt-Cys 氧化减少,这些蛋白质会部分稳定。在这里,我们表明,如果缺氧持续时间延长,调节蛋白的 Nt-Cys 可以被 ROS 化学氧化生成 Arg-CysO(H) (R-C),这是一种溶酶体 N 降解物。由此产生的 R-C 被 KCMF1 结合,KCMF1 是一种诱导 K63 连接泛素化的 N-识别器,随后由非典型 N-识别器 UBR4 进行 K27 连接泛素化。Cys/N 降解物底物的自噬靶向是通过自噬 N-识别器 p62/SQTSM-1/Sequestosome-1 通过识别 K27/K63 连接的泛素 (Ub) 链来介导的。在慢性缺氧和氧化应激下,这种 Cys/N 降解物依赖性的蛋白水解通量重编程对于细胞内稳态非常重要。p62 的小分子配体通过加速 K27/K63-泛素化 Cys/N 降解物底物的蛋白水解通量,在氧化应激下具有细胞保护作用。我们的结果表明,条件性 Cys/N 降解物底物的 Nt-Cys 作为 O 的受体,通过重新编程其 Ub 代码,通过蛋白酶体或溶酶体来维持 O 和 ROS 内稳态,并调节底物的半衰期。