Putra Maulana, Rosid Mohammad Syamsu, Handoko Djati
Department of Physics, FMIPA Universitas Indonesia, Depok 16424, Indonesia.
Sensors (Basel). 2024 Aug 3;24(15):5030. doi: 10.3390/s24155030.
In Indonesia, the monitoring of rainfall requires an estimation system with a high resolution and wide spatial coverage because of the complexities of the rainfall patterns. This study built a rainfall estimation model for Indonesia through the integration of data from various instruments, namely, rain gauges, weather radars, and weather satellites. An ensemble learning technique, specifically, extreme gradient boosting (XGBoost), was applied to overcome the sparse data due to the limited number of rain gauge points, limited weather radar coverage, and imbalanced rain data. The model includes bias correction of the satellite data to increase the estimation accuracy. In addition, the data from several weather radars installed in Indonesia were also combined. This research handled rainfall estimates in various rain patterns in Indonesia, such as seasonal, equatorial, and local patterns, with a high temporal resolution, close to real time. The validation was carried out at six points, namely, Bandar Lampung, Banjarmasin, Pontianak, Deli Serdang, Gorontalo, and Biak. The research results show good estimation accuracy, with respective values of 0.89, 0.91, 0.89, 0.9, 0.92, and 0.9, and root mean square error (RMSE) values of 2.75 mm/h, 2.57 mm/h, 3.08 mm/h, 2.64 mm/h, 1.85 mm/h, and 2.48 mm/h. Our research highlights the potential of this model to accurately capture diverse rainfall patterns in Indonesia at high spatial and temporal scales.
在印度尼西亚,由于降雨模式复杂,降雨监测需要一个高分辨率且空间覆盖范围广的估算系统。本研究通过整合来自各种仪器(即雨量计、气象雷达和气象卫星)的数据,构建了印度尼西亚的降雨估算模型。应用了一种集成学习技术,具体来说是极端梯度提升(XGBoost),以克服由于雨量计站点数量有限、气象雷达覆盖范围有限以及降雨数据不均衡导致的数据稀疏问题。该模型包括对卫星数据进行偏差校正以提高估算精度。此外,还整合了印度尼西亚安装的多个气象雷达的数据。本研究处理了印度尼西亚各种降雨模式下的降雨估算,如季节性、赤道性和局地性模式,具有高时间分辨率,接近实时。在六个地点进行了验证,分别是楠榜、马辰、坤甸、德利塞尔当、哥伦打洛和比亚克。研究结果显示出良好的估算精度,相应值分别为0.89、0.91、0.89、0.9、0.92和0.9,均方根误差(RMSE)值分别为2.75毫米/小时、2.57毫米/小时、3.08毫米/小时、2.64毫米/小时、1.85毫米/小时和2.48毫米/小时。我们的研究突出了该模型在高空间和时间尺度上准确捕捉印度尼西亚各种降雨模式的潜力。