Suppr超能文献

物联网框架下用于结构健康监测的低成本、低功耗边缘计算系统

Low-Cost, Low-Power Edge Computing System for Structural Health Monitoring in an IoT Framework.

作者信息

Hidalgo-Fort Eduardo, Blanco-Carmona Pedro, Muñoz-Chavero Fernando, Torralba Antonio, Castro-Triguero Rafael

机构信息

Department of Electronic Engineering, University of Seville, 41092 Seville, Spain.

Mechanics of Continuous Media and Theory of Structures, University of Córdoba, 14071 Córdoba, Spain.

出版信息

Sensors (Basel). 2024 Aug 5;24(15):5078. doi: 10.3390/s24155078.

Abstract

A complete low-power, low-cost and wireless solution for bridge structural health monitoring is presented. This work includes monitoring nodes with modular hardware design and low power consumption based on a control and resource management board called CoreBoard, and a specific board for sensorization called SensorBoard is presented. The firmware is presented as a design of FreeRTOS parallelised tasks that carry out the management of the hardware resources and implement the Random Decrement Technique to minimize the amount of data to be transmitted over the NB-IoT network in a secure way. The presented solution is validated through the characterization of its energy consumption, which guarantees an autonomy higher than 10 years with a daily 8 min monitoring periodicity, and two deployments in a pilot laboratory structure and the Eduardo Torroja bridge in Posadas (Córdoba, Spain). The results are compared with two different calibrated commercial systems, obtaining an error lower than 1.72% in modal analysis frequencies. The architecture and the results obtained place the presented design as a new solution in the state of the art and, thanks to its autonomy, low cost and the graphical device management interface presented, allow its deployment and integration in the current IoT paradigm.

摘要

本文提出了一种用于桥梁结构健康监测的完整的低功耗、低成本无线解决方案。这项工作包括基于名为CoreBoard的控制和资源管理板设计的具有模块化硬件且低功耗的监测节点,并展示了一种用于传感的特定板卡SensorBoard。固件被设计为FreeRTOS并行任务,用于管理硬件资源并实施随机减量技术,以安全方式最小化通过窄带物联网(NB-IoT)网络传输的数据量。通过对其能耗进行表征验证了所提出的解决方案,该方案在每日监测周期为8分钟的情况下保证了超过10年的自主性,并在一个试点实验室结构和西班牙科尔多瓦省波萨达斯的爱德华多·托罗哈桥进行了两次部署。将结果与两种不同的校准商业系统进行比较,在模态分析频率方面获得了低于1.72%的误差。所提出的架构和获得的结果使该设计成为现有技术中的一种新解决方案,并且由于其自主性、低成本以及所展示的图形化设备管理界面,使其能够在当前物联网范式中进行部署和集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff6c/11314643/8bc161b3abed/sensors-24-05078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验