Keshyagol Kiran, Hiremath Shivashankarayya, H M Vishwanatha, Rao P Krishnananda, Hiremath Pavan, Naik Nithesh
Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.
Survivability Signal Intelligence Research Center, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
Materials (Basel). 2024 Aug 2;17(15):3837. doi: 10.3390/ma17153837.
Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.
基于聚合物和陶瓷的复合材料具有独特的特性组合,有利于提高介电常数。本研究采用实证方法估算复合材料的介电常数,并使用有限元模型来了解介电常数和填料浓度对机械性能和电气性能的影响。该实证模型结合了麦克斯韦 - 瓦格纳 - 西拉斯(MWS)模型和布鲁格曼模型,以使用钛酸钡(BT)和钛酸铜钙氧化物(CCTO)作为分散在聚二甲基硅氧烷(PDMS)聚合物基体中的陶瓷填料来估算有效介电常数。结果表明,复合材料的介电常数随填料含量的增加而提高,其中CCTO/PDMS成为电容应用的最佳组合。随着填料含量的增加,CCTO/PDMS复合材料中的电容和储能分别达到900 nF和450 nJ。此外,对具有不同填料含量的电容模型增加压力对机械性能显示出有前景的影响。BT填料与聚合物基体之间的相互作用显著改变了模型的电气性能,主要取决于复合材料的介电常数。本研究提供了关于不同填料浓度对估算机械性能和电气性能影响的全面见解,有助于开发基于压力的实际电容模型。