Gauri Hashir M, Patel Ruchi, Lombardo Nicholas S, Bevan Michael A, Bharti Bhuvnesh
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
Small. 2024 Oct;20(43):e2403007. doi: 10.1002/smll.202403007. Epub 2024 Aug 10.
Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time-varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro-vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real-time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron-sized cargo using simple microellipsoids as microbots.
微型机器人具有多种应用潜力,包括靶向给药和微创手术。尽管微型机器人的设计和驱动策略取得了进展,但由于粘性阻力、系统干扰、物理化学异质性和随机布朗力的主导作用,对其运动进行精确控制仍然具有挑战性。在此,利用时变旋转磁场展示了对模型微椭球体界面运动的精确控制。研究了微椭球体的纵横比、场特性以及介质和粒子的磁性对运动的影响。通过旋转微椭球体在捕获、运输和释放货物物体时产生的移动微涡旋的作用得到了突出。此外,还提出了一种基于实时粒子和障碍物传感、路径规划以及磁场驱动的无人干预通过迷宫的控制导航方法。该研究介绍了一种利用旋转磁场引导微粒运动的机制,以及一种使用简单微椭球体作为微型机器人进行微米级货物精确导航和递送的控制方案。