Suppr超能文献

基于峰度和短时离散傅里叶变换的微调变分模态分解法在真核生物外显子区域识别中的应用

Identification of exon regions in eukaryotes using fine-tuned variational mode decomposition based on kurtosis and short-time discrete Fourier transform.

作者信息

Jayasree K, Kumar Hota Malaya, Dwivedi Atul Kumar, Ranjan Himanshuram, Srivastava Vinay Kumar

机构信息

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.

Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, India.

出版信息

Nucleosides Nucleotides Nucleic Acids. 2025;44(6):507-530. doi: 10.1080/15257770.2024.2388785. Epub 2024 Aug 10.

Abstract

In genomic research, identifying the exon regions in eukaryotes is the most cumbersome task. This article introduces a new promising model-independent method based on short-time discrete Fourier transform (ST-DFT) and fine-tuned variational mode decomposition (FTVMD) for identifying exon regions. The proposed method uses the /3 periodicity property of the eukaryotic genes to detect the exon regions using the ST-DFT. However, background noise is present in the spectrum of ST-DFT since the sliding rectangular window produces spectral leakage. To overcome this, FTVMD is proposed in this work. VMD is more resilient to noise and sampling errors than other decomposition techniques because it utilizes the generalization of the Wiener filter into several adaptive bands. The performance of VMD is affected due to the improper selection of the penalty factor (), and the number of modes (). Therefore, in fine-tuned VMD, the parameters of VMD ( and ) are optimized by maximum kurtosis value. The main objective of this article is to enhance the accuracy in the identification of exon regions in a DNA sequence. At last, a comparative study demonstrates that the proposed technique is superior to its counterparts.

摘要

在基因组研究中,识别真核生物中的外显子区域是最繁琐的任务。本文介绍了一种基于短时离散傅里叶变换(ST-DFT)和微调变分模态分解(FTVMD)的、有前景的新型无模型方法,用于识别外显子区域。所提出的方法利用真核基因的/3周期性特性,通过ST-DFT来检测外显子区域。然而,由于滑动矩形窗口会产生频谱泄漏,ST-DFT的频谱中存在背景噪声。为克服这一问题,本文提出了FTVMD。与其他分解技术相比,VMD对噪声和采样误差更具弹性,因为它将维纳滤波器推广到了多个自适应频段。VMD的性能会因惩罚因子()和模态数()选择不当而受到影响。因此,在微调VMD中,通过最大峰度值对VMD的参数(和)进行优化。本文的主要目标是提高DNA序列中外显子区域识别的准确性。最后,一项比较研究表明,所提出的技术优于其他同类技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验