Ugrumov M V, Ivanova I P, Mitskevich M S, Liposits Z, Sétáló G, Flerkó B
Neuroscience. 1985 Dec;16(4):897-906. doi: 10.1016/0306-4522(85)90104-6.
Topographical relationships of neurosecretory axons with the capillaries of the primary portal plexus were studied in the median eminence of rats from the 14th fetal till the 9th postnatal day by means of electron microscopy combined with morphometric analysis. Special attention was given to the light and electron microscopic immunocytochemical examination of luteinizing hormone-releasing hormone projections to the median eminence. Neurosecretory axons possessing secretory granules and clear microvesicles were first observed in the median eminence at the 14th fetal day. However, all of them were situated at a distance from the primary portal plexus. By the 20th fetal day, neurosecretory axons reached the external basal lamina of the primary portal plexus giving rise to so-called axovascular contacts. Some axons even penetrated into the perivascular space, apparently facilitating the neurohormone delivery into the hypophysial portal circulation. From that time on, both the number of the axons abutting on the external basal lamina and the entire area of axovascular contacts increased gradually. As to luteinizing hormone-releasing hormone axons, they grew into the median eminence from the 18th fetal day concentrating in older fetuses and neonates either over the primary portal plexus, or around the infundibular recess of the 3rd ventricle. After birth, the concentration and distribution of luteinizing hormone-releasing hormone axons within the median eminence became similar to those of adults. Luteinizing hormone-releasing hormone axons were found to arise from the neurons of septopreoptic area including the diagonal band of Broca. These data suggest the onset of neurohormone release in the median eminence from the 14th fetal day followed by the establishment of the hypothalamic control over the pituitary functions during the perinatal period in rats.