Song Shiwei, Wang Yanhui, Tian Pengfei, Zang Jianbing
School of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China.
J Colloid Interface Sci. 2025 Jan;677(Pt A):853-862. doi: 10.1016/j.jcis.2024.08.031. Epub 2024 Aug 6.
The admire activity, selective and corrosion resistance electrocatalysts for oxygen evolution reaction (OER) are the bottleneck restricting seawater electrolysis owing to the side reactions of chloride ions (Cl). Herein, we developed a local amorphous S-modified NiFe-LDH ultrathin nanosheets with large spacing on NiFe foam (la-S-NiFe-LDH/NFF) in-situ via the fast HO assisted etching-anion regulation, resulting in a superior OER catalytic activity for seawater electrolysis. Benefitting from the local amorphous architecture induced by S, enhanced the metal-oxygen covalency, triggered lattice oxygen activity, and reduced the desorption energy of O, the la-S-NiFe-LDH/NFF accelerated the OER progress via the lattice-oxygen-mediated (LOM) mechanism. Additionally, the preferential adsorbed OH and reconstructed SO cooperated to prevent the proximity and erosion of Cl and enhanced the corrosion resistance for seawater electrolysis. The assembled electrolyzer of Pt/C || la-S-NiFe-LDH/NFF possessed an industrial level of 500 mA cm at 1.83 V potential for seawater electrolysis, and sustained response for 100 h.
由于氯离子(Cl)的副反应,用于析氧反应(OER)的具有优异活性、选择性和耐腐蚀性的电催化剂是制约海水电解的瓶颈。在此,我们通过快速的HO辅助蚀刻-阴离子调控原位制备了一种在泡沫镍上具有大间距的局部非晶态硫改性镍铁层状双氢氧化物超薄纳米片(la-S-NiFe-LDH/NFF),从而获得了用于海水电解的优异OER催化活性。得益于硫诱导的局部非晶态结构,增强了金属-氧共价性,触发了晶格氧活性,并降低了氧的脱附能,la-S-NiFe-LDH/NFF通过晶格氧介导(LOM)机制加速了OER进程。此外,优先吸附的OH和重构的SO协同作用,防止了Cl的接近和侵蚀,增强了海水电解的耐腐蚀性。Pt/C || la-S-NiFe-LDH/NFF组装的电解槽在1.83 V的海水电解电位下具有500 mA cm的工业水平,并能持续响应100 h。