School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
Neural Netw. 2024 Nov;179:106575. doi: 10.1016/j.neunet.2024.106575. Epub 2024 Jul 27.
Time-delay reservoir computing (TDRC) represents a simplified variant of recurrent neural networks, employing a nonlinear node with a feedback mechanism to construct virtual nodes. The capabilities of TDRC can be enhanced by transitioning to a deep architecture. In this work, we propose a novel photonic deep residual TDRC (DR-TDRC) with augmented capabilities. The additional time delay added to the residual structure enables DR-TDRC superior to traditional deep structures across various benchmark tasks, especially in memory capability and almost an order of magnitude improvement in nonlinear channel equalization. Additionally, a specifically designed clipping algorithm is utilized to counteract the damage of redundant layers in deep structures, enabling the extension of the deep TDRC to dozens rather than just a few layers, with higher performance. We experimentally demonstrate the proof-of-concept with a 4-layer DR-TDRC containing 960 interrelated neurons (240 neurons per layer), based on four injection-locked distributed feedback lasers. We confirm the potential for scalable deep RC with elevated performance. Our results provide a feasible approach for expanding deep photonic computing to satisfy the boosting demand for artificial intelligence.
时滞reservoir computing (TDRC) 是递归神经网络的一种简化变体,它使用具有反馈机制的非线性节点来构建虚拟节点。通过过渡到深度架构,可以增强 TDRC 的能力。在这项工作中,我们提出了一种具有增强能力的新型光子深度残差 TDRC (DR-TDRC)。在残差结构中添加额外的时滞,使 DR-TDRC 在各种基准任务中优于传统的深度结构,特别是在记忆能力方面,在非线性信道均衡方面的改进几乎达到了一个数量级。此外,还专门设计了一个裁剪算法来抵消深度结构中冗余层的损坏,使深 TDRC 能够扩展到几十个而不是只有几个层,并且具有更高的性能。我们使用基于四个注入锁定分布式反馈激光器的四层 DR-TDRC(每层 240 个神经元,共包含 960 个相互关联的神经元)实验证明了该概念的可行性。我们的结果为提高性能的可扩展深度 RC 提供了一种可行的方法。我们的研究结果为扩展深度光子计算以满足人工智能的需求提供了一种可行的方法。