Suppr超能文献

利用拉曼微光谱技术研究高脂肪饮食喂养小鼠的脂质物种重塑:揭示脂肪组织功能障碍。

Mapping lipid species remodeling in high fat diet-fed mice: Unveiling adipose tissue dysfunction with Raman microspectroscopy.

机构信息

Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Dec;1869(8):159557. doi: 10.1016/j.bbalip.2024.159557. Epub 2024 Aug 10.

Abstract

Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (n = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.

摘要

肥胖症导致脂质代谢失调,进而导致脂肪组织扩张,这是代谢功能障碍和慢性疾病的主要原因。脂质代谢和脂肪酸变化在肥胖症的发展中起着至关重要的作用。在这项概念验证研究中,我们利用拉曼技术结合组织化学成像方法,使用小样本量(每组 n = 3)分析高脂肪饮食(HFD)对小鼠不同类型脂肪组织的影响。在高脂肪饮食(HFD)喂养六周后,与低脂饮食(LFD)组相比,我们发现 HFD 组的脂肪组织发生了肥大、胶原蛋白水平升高和巨噬细胞增多。拉曼光谱的统计分析显示,不同脂肪垫(棕色脂肪组织(BAT)、皮下白色脂肪组织(SWAT)和内脏白色脂肪组织(VWAT))的 HFD 组不饱和脂质水平显著降低,脂质与蛋白质的比值升高。使用空模型和 DCLS 方法对脂肪组织的拉曼图像进行分析,以对组织中的不饱和和饱和脂质种类进行空间分析。结果表明,与 LFD 组织相比,HFD 组 BAT 脂肪组织中的 ω-3、ω-6、胆固醇和三酰基甘油水平升高。这些发现表明,尽管 HFD 组的 SWAT 和 VWAT 脂肪组织中的胆固醇、ω-6/ω-3 比值和三酰基甘油水平升高,但 ω-3 和 ω-6 的水平在 HFD 后下降。该研究表明,拉曼光谱在分子水平上为研究 HFD 期间脂肪组织的脂质种类重塑和空间图谱提供了宝贵的信息。

相似文献

1
Mapping lipid species remodeling in high fat diet-fed mice: Unveiling adipose tissue dysfunction with Raman microspectroscopy.
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Dec;1869(8):159557. doi: 10.1016/j.bbalip.2024.159557. Epub 2024 Aug 10.
5
Sex differences in the lipid profiles of visceral adipose tissue with obesity and gonadectomy.
J Lipid Res. 2025 May;66(5):100803. doi: 10.1016/j.jlr.2025.100803. Epub 2025 Apr 15.

引用本文的文献

1
Penile Cancer: Innovations in Ultrastructural and Vibrational Markers.
ACS Omega. 2025 Jan 23;10(4):3449-3461. doi: 10.1021/acsomega.4c07293. eCollection 2025 Feb 4.

本文引用的文献

1
Multimodal Imaging of Pancreatic Cancer Microenvironment in Response to an Antiglycolytic Drug.
Adv Healthc Mater. 2023 Dec;12(31):e2301815. doi: 10.1002/adhm.202301815. Epub 2023 Sep 23.
3
Labelfree mapping and profiling of altered lipid homeostasis in the rat hippocampus after traumatic stress: Role of oxidative homeostasis.
Neurobiol Stress. 2022 Aug 11;20:100476. doi: 10.1016/j.ynstr.2022.100476. eCollection 2022 Sep.
4
Next-Generation Pathology Using Multiplexed Immunohistochemistry: Mapping Tissue Architecture at Single-Cell Level.
Front Oncol. 2022 Jul 29;12:918900. doi: 10.3389/fonc.2022.918900. eCollection 2022.
5
Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics.
Prog Lipid Res. 2022 Jul;87:101183. doi: 10.1016/j.plipres.2022.101183. Epub 2022 Aug 9.
6
Multimodal Label-Free Monitoring of Adipogenic Stem Cell Differentiation Using Endogenous Optical Biomarkers.
Adv Funct Mater. 2021 Oct 20;31(43). doi: 10.1002/adfm.202103955. Epub 2021 Aug 6.
7
Prominent hypertrophy of perivascular adipocytes due to short-term high fat diet.
Biochim Biophys Acta Mol Basis Dis. 2022 Feb 1;1868(2):166315. doi: 10.1016/j.bbadis.2021.166315. Epub 2021 Dec 4.
8
Impact of Fatty Acids on Obesity-Associated Diseases and Radical Weight Reduction.
Obes Surg. 2022 Feb;32(2):428-440. doi: 10.1007/s11695-021-05789-w. Epub 2021 Nov 23.
10
Raman Spectroscopy for Adipose Tissue Assessment in Rat Models of Obesity and Type 1 Diabetes.
Appl Spectrosc. 2021 Sep;75(9):1189-1197. doi: 10.1177/0003702821990357. Epub 2021 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验