Liang Xiao, Wu Yang, Feng Qing, Zhu Deyu, Huang Qi, Wei Zhuangzhuang, Ma Ping, Yang Xu, Bao Cuiyu, Bao Xinyu
Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; School of Public Health and Nursing, Hubei University of Science and Technology, Xianning 437100, China.
Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
Ecotoxicol Environ Saf. 2025 Jul 19;302:118708. doi: 10.1016/j.ecoenv.2025.118708.
Dibutyl phthalate (DBP) is a pollutant associated with plastic contamination and is commonly used as a plasticizer. It is linked to various adverse health effects, including cardiovascular disease (CVD). There is an association between DBP and high-fat diet (HFD), with HFD also contributing to the development of CVD, including cardiac fibrosis. Cardiac fibrosis is characterized by chronic inflammation of myocardial tissue and is a significant contributor to CVD pathogenesis. Recent research provides evidence suggesting a potential link between environmental exposure to DBP and cardiac damage. However, it remains unclear whether DBP has a synergistic effect on HFD and whether the interaction between the two exacerbates cardiac fibrosis and dysfunction.
The aim of this study was to investigate the synergistic effects of DBP on cardiac fibrosis induced by HFD. Specifically, we elucidated the mechanisms underlying the synergistic effect of DBP on HFD-induced cardiac fibrosis, with a focus on oxidative stress, pyroptosis, and the disruption of hepatic lipid metabolism. Furthermore, we explored the protective effects of two antioxidants, salidroside (Sal) and vitamin E (VitE), against the exacerbation of cardiac fibrosis caused by the synergistic action of DBP and HFD.
Male Sprague-Dawley (SD) rats were divided into ten groups: a blank control group (Saline); separate groups exposed to low, medium, and high doses of DBP (DBP0.01, DBP1, DBP50 mg/kg/day); a high-fat diet group (HFD); a synergy group combining high concentrations of DBP and a high-fat diet (DBP50 +HFD); and treatment groups with Vitamin E and salidroside (DBP50 +VitE, DBP50 +Sal, DBP50 +HFD+VitE, DBP50 +HFD+Sal). The entire experimental period lasted for 12 weeks. We assessed the effects of DBP and HFD on cardiac function using echocardiography, as well as their impact on the development of cardiac fibrosis through histopathological analysis of the heart. Additionally, we examined the histopathology of liver tissue, lipid levels (Total cholesterol, Triglycerides, High-density lipoprotein, Low-density lipoprotein, Very low-density lipoprotein, Oxidized low-density lipoprotein), oxidative stress biomarkers (Reactive oxygen species, Malondialdehyde, Glutathione), pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, Interleukin-1β, Interleukin-18), and serum metabolomics (Data Credibility Analysis, Metabolite Differential Analysis, Metabolic Pathway Analysis and Metabolism-related analysis).
Our findings revealed that, compared to the saline group, both the high-dose DBP group and the HFD group exhibited significant cardiotoxic effects, inducing alterations in oxidative stress markers (ROS, MDA, and GSH) and levels of pyroptosis-related proteins (NLRP3, Caspase-1, and GSDMD) in myocardial tissue. Concurrently, the high-dose DBP and HFD groups demonstrated notable endocrine-disrupting effects, triggering hepatic steatosis (H&E and Oil Red O) and hyperlipidemia (TC, TG, HDL, LDL, VLDL, and ox-LDL). Ultimately, the combined action of DBP and HFD exacerbated the progression of cardiac fibrosis (H&E and Masson) and dysfunction (Echocardiography). Furthermore, metabolomics results suggest that the relevant pathways and metabolites involved in the citrate cycle (TCA cycle), arginine biosynthesis, tryptophan metabolism, and linoleic acid metabolism may also play significant roles. However, intervention with the inhibitors vitamin E and salidroside demonstrated protective effects against these adverse outcomes. Notably, salidroside exhibited superior efficacy compared to vitamin E in ameliorating lipid metabolism disorders, indicating its potential for preventing and treating cardiac fibrosis and dysfunction exacerbated by the synergistic effects of DBP and HFD.
This study reveals, for the first time, the synergistic effect of DBP on HFD-induced cardiac fibrosis and dysfunction, suggesting that salidroside has a protective effect against cardiac fibrosis. These findings provide new insights into the multifaceted mechanisms involved in the pathology of cardiac fibrosis induced by DBP and HFD, and offer potential intervention targets for the prevention and treatment of cardiac fibrosis and dysfunction exacerbated by the synergistic effects of DBP and HFD.
邻苯二甲酸二丁酯(DBP)是一种与塑料污染相关的污染物,常用作增塑剂。它与多种不良健康影响有关,包括心血管疾病(CVD)。DBP与高脂饮食(HFD)之间存在关联,高脂饮食也会导致包括心脏纤维化在内的心血管疾病的发展。心脏纤维化的特征是心肌组织的慢性炎症,是心血管疾病发病机制的重要因素。最近的研究提供了证据,表明环境暴露于DBP与心脏损伤之间可能存在联系。然而,尚不清楚DBP对高脂饮食是否具有协同作用,以及两者之间的相互作用是否会加剧心脏纤维化和功能障碍。
本研究旨在探讨DBP对高脂饮食诱导的心脏纤维化的协同作用。具体而言,我们阐明了DBP对高脂饮食诱导的心脏纤维化协同作用的潜在机制,重点关注氧化应激、细胞焦亡和肝脏脂质代谢紊乱。此外,我们探讨了两种抗氧化剂红景天苷(Sal)和维生素E(VitE)对DBP和高脂饮食协同作用导致的心脏纤维化加重的保护作用。
将雄性Sprague-Dawley(SD)大鼠分为十组:空白对照组(生理盐水);分别暴露于低、中、高剂量DBP的组(DBP0.01、DBP1、DBP50 mg/kg/天);高脂饮食组(HFD);高浓度DBP与高脂饮食联合的协同组(DBP50+HFD);以及使用维生素E和红景天苷的治疗组(DBP50+VitE、DBP50+Sal、DBP50+HFD+VitE、DBP50+HFD+Sal)。整个实验期持续十二周。我们使用超声心动图评估DBP和高脂饮食对心脏功能的影响,以及通过心脏组织病理学分析评估它们对心脏纤维化发展的影响。此外,我们检查了肝脏组织的组织病理学、脂质水平(总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白、极低密度脂蛋白、氧化低密度脂蛋白)、氧化应激生物标志物(活性氧、丙二醛、谷胱甘肽)、细胞焦亡相关蛋白(NLRP3、半胱天冬酶-1、GSDMD、白细胞介素-1β、白细胞介素-18)和血清代谢组学(数据可信度分析、代谢物差异分析、代谢途径分析和代谢相关分析)。
我们的研究结果表明,与生理盐水组相比,高剂量DBP组和高脂饮食组均表现出显著的心脏毒性作用,导致心肌组织中氧化应激标志物(ROS、MDA和GSH)以及细胞焦亡相关蛋白(NLRP3、半胱天冬酶-1和GSDMD)水平发生改变。同时,高剂量DBP和高脂饮食组表现出明显的内分泌干扰作用,引发肝脂肪变性(苏木精-伊红染色和油红O染色)和高脂血症(TC、TG、HDL、LDL、VLDL和ox-LDL)。最终,DBP和高脂饮食的联合作用加剧了心脏纤维化(苏木精-伊红染色和Masson染色)的进展和功能障碍(超声心动图)。此外,代谢组学结果表明,参与柠檬酸循环(TCA循环)、精氨酸生物合成、色氨酸代谢和亚油酸代谢的相关途径和代谢物也可能起重要作用。然而,使用抑制剂维生素E和红景天苷进行干预对这些不良后果具有保护作用。值得注意的是,在改善脂质代谢紊乱方面,红景天苷的疗效优于维生素E,表明其在预防和治疗由DBP和高脂饮食协同作用加剧的心脏纤维化和功能障碍方面具有潜力。
本研究首次揭示了DBP对高脂饮食诱导的心脏纤维化和功能障碍的协同作用,表明红景天苷对心脏纤维化具有保护作用。这些发现为DBP和高脂饮食诱导的心脏纤维化病理过程中涉及的多方面机制提供了新的见解,并为预防和治疗由DBP和高脂饮食协同作用加剧的心脏纤维化和功能障碍提供了潜在的干预靶点。