Suppr超能文献

基于机器学习的胆道闭锁检测预测模型的开发与验证

Development and Validation of a Machine Learning-Based Prediction Model for Detection of Biliary Atresia.

作者信息

Choi Ho Jung, Kim Yeong Eun, Namgoong Jung-Man, Kim Inki, Park Jun Sung, Baek Woo Im, Lee Byong Sop, Yoon Hee Mang, Cho Young Ah, Lee Jin Seong, Shim Jung Ok, Oh Seak Hee, Moon Jin Soo, Ko Jae Sung, Kim Dae Yeon, Kim Kyung Mo

机构信息

Department of Pediatrics, Asan Medical Center Children's Hospital, University Ulsan College of Medicine, Seoul, Korea.

Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University Ulsan College of Medicine, Seoul, Korea.

出版信息

Gastro Hep Adv. 2023 May 23;2(6):778-787. doi: 10.1016/j.gastha.2023.05.002. eCollection 2023.

Abstract

BACKGROUND AND AIMS

Biliary atresia is a rare and devastating bile duct disease that occurs during the neonatal period. Timely identification and prompt surgical intervention is critical for improving the outcome. The aim of the study was to develop a new machine learning-based prediction model for the detection of biliary atresia.

METHODS

Neonates aged <100 days with cholestasis at least once were retrospectively screened in 2 tertiary referral hospitals between 2015 and 2020. Simple demographic data, routine laboratory indices, and imaging findings of ultrasonography and hepatobiliary scintigraphy were used as features in the multivariate analysis. The extreme gradient boosting (XGBoost) framework was used to develop prediction models according to the diagnostic steps.

RESULTS

Among 1605 enrolled neonates with all-cause cholestasis, 145 (9%) were included as having biliary atresia. Direct bilirubin, gamma-glutamyl transpeptidase, abdominal sonography, and hepatobiliary scan were the most impactful features in prediction models. The Step II XGBoost model, consisting of nonimaging inputs, showed excellent discriminatory performance (area under the curve = 0.97). The Step III and IV XGBoost models showed near-perfect performances (area under the curve = 0.998 and 0.999, respectively). In external validation (n = 912 with 118 [12.9%] biliary atresia), XGBoost-based prediction models consistently showed acceptable performances. Utilizing shapley additive explanation values also provided visualized insight and explanation of the contribution of features in detecting biliary atresia. The models were integrated into a web-based diagnostic tool for case-level application.

CONCLUSION

We introduced a new machine learning-based prediction model for detecting biliary atresia in the largest cohorts of neonatal cholestasis.

摘要

背景与目的

胆道闭锁是一种发生于新生儿期的罕见且严重的胆管疾病。及时识别并迅速进行手术干预对于改善预后至关重要。本研究的目的是开发一种基于机器学习的新型预测模型,用于检测胆道闭锁。

方法

对2015年至2020年间在2家三级转诊医院进行回顾性筛查的年龄小于100天且至少有一次胆汁淤积的新生儿进行研究。简单的人口统计学数据、常规实验室指标以及超声和肝胆闪烁显像的影像学检查结果被用作多变量分析的特征。根据诊断步骤,使用极端梯度提升(XGBoost)框架开发预测模型。

结果

在1605例纳入研究的全病因胆汁淤积新生儿中,145例(9%)被诊断为胆道闭锁。直接胆红素、γ-谷氨酰转肽酶、腹部超声和肝胆扫描是预测模型中最具影响力的特征。由非影像学输入组成的第二步XGBoost模型显示出优异的鉴别性能(曲线下面积=0.97)。第三步和第四步XGBoost模型显示出近乎完美的性能(曲线下面积分别为0.998和0.999)。在外部验证(n=912,其中118例[12.9%]为胆道闭锁)中,基于XGBoost的预测模型始终表现出可接受的性能。利用Shapley加性解释值还提供了对特征在检测胆道闭锁中贡献的可视化洞察和解释。这些模型被集成到一个基于网络的诊断工具中,用于病例层面的应用。

结论

我们在最大规模的新生儿胆汁淤积队列中引入了一种基于机器学习的新型预测模型,用于检测胆道闭锁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a5c/11307559/80f51ee2c172/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验