Guo Boyi, Ling Wodan, Kwon Sang Ho, Panwar Pratibha, Ghazanfar Shila, Martinowich Keri, Hicks Stephanie C
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, NY, USA.
ArXiv. 2024 Aug 1:arXiv:2408.00367v1.
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. As the cost of generating these data decreases, these technologies provide an exciting opportunity to create large-scale atlases that integrate SRT data across multiple tissues, individuals, species, or phenotypes to perform population-level analyses. Here, we describe unique challenges of varying spatial resolutions in SRT data, as well as highlight the opportunities for standardized preprocessing methods along with computational algorithms amenable to atlas-scale datasets leading to improved sensitivity and reproducibility in the future.
空间分辨转录组学(SRT)技术的进步推动了新的计算分析方法的发展,以揭示生物学见解。随着生成这些数据的成本降低,这些技术提供了一个令人兴奋的机会,即创建大规模图谱,整合跨多个组织、个体、物种或表型的SRT数据,以进行群体水平的分析。在这里,我们描述了SRT数据中不同空间分辨率的独特挑战,并强调了标准化预处理方法以及适用于图谱规模数据集的计算算法的机会,这将在未来提高灵敏度和可重复性。