Suppr超能文献

使用光谱扩散后验采样的多材料分解

Multi-Material Decomposition Using Spectral Diffusion Posterior Sampling.

作者信息

Jiang Xiao, Gang Grace J, Stayman J Webster

出版信息

ArXiv. 2024 Aug 2:arXiv:2408.01519v1.

Abstract

Many spectral CT applications require accurate material decomposition. Existing material decomposition algorithms are often susceptible to significant noise magnification or, in the case of one-step model-based approaches, hampered by slow convergence rates and large computational requirements. In this work, we proposed a novel framework - spectral diffusion posterior sampling (spectral DPS) - for one-step reconstruction and multi-material decomposition, which combines sophisticated prior information captured by one-time unsupervised learning and an arbitrary analytic physical system model. Spectral DPS is built upon a general DPS framework for nonlinear inverse problems. Several strategies developed in previous work, including jumpstart sampling, Jacobian approximation, and multi-step likelihood updates are applied facilitate stable and accurate decompositions. The effectiveness of spectral DPS was evaluated on a simulated dual-layer and a kV-switching spectral system as well as on a physical cone-beam CT (CBCT) test bench. In simulation studies, spectral DPS improved PSNR by 27.49% to 71.93% over baseline DPS and by 26.53% to 57.30% over MBMD, depending on the the region of interest. In physical phantom study, spectral DPS achieved a <1% error in estimating the mean density in a homogeneous region. Compared with baseline DPS, spectral DPS effectively avoided generating false structures in the homogeneous phantom and reduced the variability around edges. Both simulation and physical phantom studies demonstrated the superior performance of spectral DPS for stable and accurate material decomposition.

摘要

许多光谱CT应用都需要精确的物质分解。现有的物质分解算法往往容易受到显著的噪声放大影响,或者在基于一步模型的方法中,会受到收敛速度慢和计算要求高的阻碍。在这项工作中,我们提出了一种新颖的框架——光谱扩散后验采样(spectral DPS)——用于一步重建和多物质分解,它结合了通过一次性无监督学习捕获的复杂先验信息和任意解析物理系统模型。光谱DPS建立在用于非线性逆问题的通用DPS框架之上。应用了先前工作中开发的几种策略,包括快速启动采样、雅可比近似和多步似然更新,以促进稳定和准确的分解。在模拟双层和kV切换光谱系统以及物理锥束CT(CBCT)测试平台上评估了光谱DPS的有效性。在模拟研究中,根据感兴趣区域的不同,光谱DPS比基线DPS的PSNR提高了27.49%至71.93%,比MBMD提高了26.53%至57.30%。在物理体模研究中,光谱DPS在估计均匀区域的平均密度时误差<1%。与基线DPS相比,光谱DPS有效地避免了在均匀体模中生成虚假结构,并减少了边缘周围的变异性。模拟和物理体模研究都证明了光谱DPS在稳定和准确的物质分解方面的卓越性能。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验