Jiang Xiao, Gang Grace J, Stayman J Webster
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:324-327.
In this work, we introduce a new deep learning approach based on diffusion posterior sampling (DPS) to perform material decomposition from spectral CT measurements. This approach combines sophisticated prior knowledge from unsupervised training with a rigorous physical model of the measurements. A faster and more stable variant is proposed that uses a "jumpstarted" process to reduce the number of time steps required in the reverse process and a gradient approximation to reduce the computational cost. Performance is investigated for two spectral CT systems: dual-kVp and dual-layer detector CT. On both systems, DPS achieves high Structure Similarity Index Metric Measure(SSIM) with only 10% of iterations as used in the model-based material decomposition(MBMD). Jumpstarted DPS (JSDPS) further reduces computational time by over 85% and achieves the highest accuracy, the lowest uncertainty, and the lowest computational costs compared to classic DPS and MBMD. The results demonstrate the potential of JSDPS for providing relatively fast and accurate material decomposition based on spectral CT data.
在这项工作中,我们引入了一种基于扩散后验采样(DPS)的新型深度学习方法,用于从光谱CT测量中进行物质分解。该方法将无监督训练中的复杂先验知识与测量的严格物理模型相结合。我们提出了一种更快、更稳定的变体,它使用“快速启动”过程来减少反向过程所需的时间步数,并使用梯度近似来降低计算成本。我们针对两种光谱CT系统研究了其性能:双kVp和双层探测器CT。在这两种系统上,DPS仅使用基于模型的物质分解(MBMD)中10%的迭代次数就能实现高结构相似性指数度量(SSIM)。与经典DPS和MBMD相比,快速启动DPS(JSDPS)进一步将计算时间减少了85%以上,并实现了最高的精度、最低的不确定性和最低的计算成本。结果表明,JSDPS有潜力基于光谱CT数据提供相对快速且准确的物质分解。