Suppr超能文献

使用光谱扩散后验采样的CT材料分解

CT Material Decomposition using Spectral Diffusion Posterior Sampling.

作者信息

Jiang Xiao, Gang Grace J, Stayman J Webster

出版信息

Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:324-327.

Abstract

In this work, we introduce a new deep learning approach based on diffusion posterior sampling (DPS) to perform material decomposition from spectral CT measurements. This approach combines sophisticated prior knowledge from unsupervised training with a rigorous physical model of the measurements. A faster and more stable variant is proposed that uses a "jumpstarted" process to reduce the number of time steps required in the reverse process and a gradient approximation to reduce the computational cost. Performance is investigated for two spectral CT systems: dual-kVp and dual-layer detector CT. On both systems, DPS achieves high Structure Similarity Index Metric Measure(SSIM) with only 10% of iterations as used in the model-based material decomposition(MBMD). Jumpstarted DPS (JSDPS) further reduces computational time by over 85% and achieves the highest accuracy, the lowest uncertainty, and the lowest computational costs compared to classic DPS and MBMD. The results demonstrate the potential of JSDPS for providing relatively fast and accurate material decomposition based on spectral CT data.

摘要

在这项工作中,我们引入了一种基于扩散后验采样(DPS)的新型深度学习方法,用于从光谱CT测量中进行物质分解。该方法将无监督训练中的复杂先验知识与测量的严格物理模型相结合。我们提出了一种更快、更稳定的变体,它使用“快速启动”过程来减少反向过程所需的时间步数,并使用梯度近似来降低计算成本。我们针对两种光谱CT系统研究了其性能:双kVp和双层探测器CT。在这两种系统上,DPS仅使用基于模型的物质分解(MBMD)中10%的迭代次数就能实现高结构相似性指数度量(SSIM)。与经典DPS和MBMD相比,快速启动DPS(JSDPS)进一步将计算时间减少了85%以上,并实现了最高的精度、最低的不确定性和最低的计算成本。结果表明,JSDPS有潜力基于光谱CT数据提供相对快速且准确的物质分解。

相似文献

本文引用的文献

1
Deep learning based spectral CT imaging.基于深度学习的光谱 CT 成像。
Neural Netw. 2021 Dec;144:342-358. doi: 10.1016/j.neunet.2021.08.026. Epub 2021 Aug 28.
5
Deep-learning-based direct inversion for material decomposition.基于深度学习的材料分解直接反演
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.
8
Multi-material decomposition using statistical image reconstruction for spectral CT.用于光谱CT的基于统计图像重建的多材料分解
IEEE Trans Med Imaging. 2014 Aug;33(8):1614-26. doi: 10.1109/TMI.2014.2320284. Epub 2014 Apr 25.
9
A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.一种用于双能 CT 图像的多物质分解的灵活方法。
IEEE Trans Med Imaging. 2014 Jan;33(1):99-116. doi: 10.1109/TMI.2013.2281719. Epub 2013 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验