Suppr超能文献

厚层油藏中CO-WAG研究:地质影响因素及随机森林重要性评价

Research on CO-WAG in Thick Reservoirs: Geological Influencing Factors and Random Forest Importance Evaluation.

作者信息

Luo Qiang, Li Yunbo, Sun Hao, Liu Shangqi, Yu Yang, Yang Zhaopeng

机构信息

PetroChina, Research Institute of Petroleum Exploration and Development, Beijing 100083, China.

出版信息

ACS Omega. 2024 Jul 26;9(31):34118-34127. doi: 10.1021/acsomega.4c04901. eCollection 2024 Aug 6.

Abstract

In the development process of thick reservoirs, the impact of various geological factors on the effectiveness of the CO water alternating gas (CO-WAG) flooding technology remains unclear. This paper establishes multiple CO-WAG flooding models for thick reservoirs to study the effects of sedimentary rhythm, dip angle, matrix permeability, high-permeability streaks (HPS), and barrier layers on the effectiveness of CO-WAG flooding and then uses the random forest algorithm to rank the importance of these geological factors. The results show that different geological factors have varying degrees of impact on the distribution of water and gas migration and recovery rates during the CO-WAG flooding process. The ranking of the importance of various factors obtained by reservoir numerical simulations and the random forest algorithm is HPS, sedimentary rhythm, dip angle, matrix permeability, and barrier layers. These research findings will provide effective guidance and a reference for the optimal selection of CO-WAG flooding schemes for similar thick reservoirs under different geological conditions.

摘要

在厚油藏开发过程中,各种地质因素对CO水驱气交替(CO-WAG)驱油技术效果的影响尚不清楚。本文针对厚油藏建立了多个CO-WAG驱油模型,研究沉积韵律、倾角、基质渗透率、高渗条带(HPS)和隔层对CO-WAG驱油效果的影响,然后利用随机森林算法对这些地质因素的重要性进行排序。结果表明,不同地质因素对CO-WAG驱油过程中水气运移分布和采收率有不同程度的影响。通过油藏数值模拟和随机森林算法得到的各因素重要性排序为:高渗条带、沉积韵律、倾角、基质渗透率、隔层。这些研究成果将为不同地质条件下类似厚油藏CO-WAG驱油方案的优化选择提供有效指导和参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验