Ma Lei, Yin Lin, Zhu Hai, Li Jing, Wang Dong
Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.
Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
J Tissue Eng. 2024 Aug 10;15:20417314241268344. doi: 10.1177/20417314241268344. eCollection 2024 Jan-Dec.
Antifibrotic drug screening requires evaluating the inhibitory effects of drug candidates on fibrotic cells while minimizing any adverse effects on normal cells. It is challenging to create organ-specific vascularized organoids that accurately model fibrotic and normal tissues for drug screening. Our previous studies have established methods for culturing primary microvessels and epithelial cells from adult tissues. In this proof-of-concept study, we used rats as a model organism to create a two-dimensional vascularized liver organoid model that comprised primary microvessels, epithelia, and stellate cells from adult livers. To provide appropriate substrates for cell culture, we engineered ECMs with defined stiffness to mimic the different stages of fibrotic tissues and normal tissues. We examined the effects of two TGFβ signaling inhibitors, A83-01 and pirfenidone, on the vascularized liver organoids on the stiff and soft ECMs. We found that A83-01 inhibited fibrotic markers while promoting epithelial genes of hepatocytes and cholangiocytes. However, it inhibited microvascular genes on soft ECM, indicating a detrimental effect on normal tissues. Furthermore, A83-01 significantly promoted the expression of markers of stem cells and cancers, increasing the potential risk of it being a carcinogen. In contrast, pirfenidone, an FDA-approved compound for antifibrotic treatments, did not significantly affect all the genes examined on soft ECM. Although pirfenidone had minor effects on most genes, it did reduce the expression of collagens, the major components of fibrotic tissues. These results explain why pirfenidone can slow fibrosis progression with minor side effects in clinical trials. In conclusion, our study presents a method for creating vascularized liver organoids that can accurately mimic fibrotic and normal tissues for drug screening. Our findings provide valuable insights into the potential risks and benefits of using A83-01 and pirfenidone as antifibrotic drugs. This method can be applied to other organs to create organ-specific vascularized organoids for drug development.
抗纤维化药物筛选需要评估候选药物对纤维化细胞的抑制作用,同时尽量减少对正常细胞的任何不良影响。创建能够准确模拟纤维化和正常组织用于药物筛选的器官特异性血管化类器官具有挑战性。我们之前的研究已经建立了从成年组织中培养原代微血管和上皮细胞的方法。在这项概念验证研究中,我们以大鼠作为模式生物,创建了一种二维血管化肝脏类器官模型,该模型由成年肝脏的原代微血管、上皮细胞和星状细胞组成。为细胞培养提供合适的底物,我们设计了具有特定刚度的细胞外基质(ECM),以模拟纤维化组织和正常组织的不同阶段。我们研究了两种转化生长因子β(TGFβ)信号抑制剂A83-01和吡非尼酮对在硬和软ECM上的血管化肝脏类器官的影响。我们发现,A83-01抑制纤维化标志物,同时促进肝细胞和胆管上皮细胞的上皮基因。然而,它抑制软ECM上的微血管基因,表明对正常组织有有害影响。此外,A83-01显著促进干细胞和癌症标志物的表达,增加了其作为致癌物的潜在风险。相比之下,吡非尼酮是一种经美国食品药品监督管理局(FDA)批准用于抗纤维化治疗的化合物,对软ECM上检测的所有基因没有显著影响。尽管吡非尼酮对大多数基因有轻微影响,但它确实降低了纤维化组织的主要成分胶原蛋白的表达。这些结果解释了为什么吡非尼酮在临床试验中可以以轻微的副作用减缓纤维化进展。总之,我们的研究提出了一种创建血管化肝脏类器官的方法,该方法可以准确模拟纤维化和正常组织用于药物筛选。我们的发现为使用A83-01和吡非尼酮作为抗纤维化药物的潜在风险和益处提供了有价值的见解。这种方法可以应用于其他器官,以创建用于药物开发的器官特异性血管化类器官。