McDonald Nathan D, Antoshak Erin E
United States Army Combat Capabilities Development Command Chemical Biological Center, 8908 Guard St. E3831, Gunpowder, MD 21010, USA.
Excet Inc. 6225 Brandon Ave #360, Springfield, VA 22150, USA.
Access Microbiol. 2024 Jul 17;6(7). doi: 10.1099/acmi.0.000723.v3. eCollection 2024.
Synthetic biology and genome engineering capabilities have facilitated the utilization of bacteria for a myriad of applications, ranging from medical treatments to biomanufacturing of complex molecules. The bacterial outer membrane, specifically the lipopolysaccharide (LPS), plays an integral role in the physiology, pathogenesis, and serves as a main target of existing detection assays for Gram-negative bacteria. Here we use CRISPR/Cas9 recombineering to insert lipid A biosynthesis genes into the genome of an strain expressing the lipid IV subunit. We successfully inserted three genes: , , and into the genome and demonstrated their expression via reverse transcription PCR (RT-PCR). Despite observing expression of these genes, analytical characterization of the engineered strain's lipid A structure via MALDI-TOF mass spectrometry indicated that the lipid A was not recapitulated in the background. As synthetic biology and genome engineering technologies advance, novel applications and utilities for the detection and treatments of dangerous pathogens like will continue to be developed.
合成生物学和基因组工程技术推动了细菌在众多应用中的利用,从医学治疗到复杂分子的生物制造。细菌外膜,特别是脂多糖(LPS),在生理学、发病机制中起着不可或缺的作用,并且是现有革兰氏阴性菌检测分析的主要目标。在这里,我们使用CRISPR/Cas9重组工程将脂质A生物合成基因插入到表达脂质IV亚基的菌株基因组中。我们成功地将三个基因:、和插入到基因组中,并通过逆转录PCR(RT-PCR)证明了它们的表达。尽管观察到了这些基因的表达,但通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)对工程菌株脂质A结构进行的分析表征表明,脂质A并未在背景中重现。随着合成生物学和基因组工程技术的进步,针对像这样危险病原体的检测和治疗的新应用和实用方法将不断被开发出来。