Suppr超能文献

用于大肠杆菌 CRISPR-Cas9 辅助基因组编辑的改良 pCas/pTargetF 系统。

A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli.

机构信息

College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.

Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

出版信息

Acta Biochim Biophys Sin (Shanghai). 2021 Apr 15;53(5):620-627. doi: 10.1093/abbs/gmab036.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (Cas9)-based genome editing tool pCas/pTargetF system that we established previously has been widely used in Escherichia coli MG1655. However, this system failed to manipulate the genome of E. coli BL21(DE3), owing to the potential higher leaky transcription of the gRNA-pMB1 specific to pTargetF in this strain. In this study, we modified the pCas/pTargetF system by replacing the promoter of gRNA-pMB1 with a tightly regulated promoter PrhaB, changing the replicon of pCas to a nontemperature-sensitive replicon, adding the sacB gene into pCas, and replacing the original N20-specific sequence of pTargetF with ccdB gene. We call this updated system as pEcCas/pEcgRNA. We found that gRNA-pMB1 indeed showed a slightly higher leaky expression in the pCas/pTargetF system compared with pEcCas/pEcgRNA. We also confirmed that genome editing can successfully be performed in BL21(DE3) by pEcCas/pEcgRNA with high efficiency. The application of pEcCas/pEcgRNA was then expanded to the E. coli B strain BL21 StarTM (DE3), K-12 strains MG1655, DH5α, CGMCC3705, Nissle1917, W strain ATCC9637, and also another species of Enterobacteriaceae, Tatumella citrea DSM13699, without any specific modifications. Finally, the plasmid curing process was optimized to shorten the time from $\sim$60 h to $\sim$32 h. The entire protocol (including plasmid construction, editing, electroporation and mutant verification, and plasmid elimination) took only $\sim$5.5 days per round in the pEcCas/pEcgRNA system, whereas it took $\sim$7.5 days in the pCas/pTargetF system. This study established a faster-acting genome editing tool that can be used in a wider range of E. coli strains and will also be useful for other Enterobacteriaceae species.

摘要

我们之前建立的基于簇状规律间隔短回文重复序列(CRISPR)相关核酸酶 9(Cas9)的基因组编辑工具 pCas/pTargetF 系统已在大肠杆菌 MG1655 中得到广泛应用。然而,该系统无法对大肠杆菌 BL21(DE3)的基因组进行操作,这是由于 pTargetF 中针对 gRNA-pMB1 的 gRNA-pMB1 特异性潜在更高的漏转录。在这项研究中,我们通过用受严格调控的启动子 PrhaB 替换 gRNA-pMB1 的启动子、将 pCas 的复制子改为非温度敏感的复制子、在 pCas 中添加 sacB 基因以及用 ccdB 基因替换 pTargetF 的原始 N20 特异性序列,对 pCas/pTargetF 系统进行了修改。我们将这个更新的系统称为 pEcCas/pEcgRNA。我们发现,与 pEcCas/pEcgRNA 相比,gRNA-pMB1 在 pCas/pTargetF 系统中确实表现出稍高的漏表达。我们还证实,通过 pEcCas/pEcgRNA,BL21(DE3)中的基因组编辑可以高效地进行。pEcCas/pEcgRNA 的应用随后扩展到大肠杆菌 B 菌株 BL21 StarTM(DE3)、K-12 菌株 MG1655、DH5α、CGMCC3705、Nissle1917、W 菌株 ATCC9637,以及另一种肠杆菌科物种 Tatumella citrea DSM13699,而无需任何特定的修改。最后,优化了质粒消除过程,将时间从$\sim$60 小时缩短到$\sim$32 小时。在 pEcCas/pEcgRNA 系统中,每个循环的整个方案(包括质粒构建、编辑、电穿孔和突变体验证以及质粒消除)仅需$\sim$5.5 天,而在 pCas/pTargetF 系统中则需要$\sim$7.5 天。本研究建立了一种更快作用的基因组编辑工具,可用于更广泛的大肠杆菌菌株,也将对其他肠杆菌科物种有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验