DDE:用于多层次地理实体中传染病发展预测的深度动态流行病学建模

DDE: Deep Dynamic Epidemiological Modeling for Infectious Illness Development Forecasting in Multi-level Geographic Entities.

作者信息

Liu Ruhan, Li Jiajia, Wen Yang, Li Huating, Zhang Ping, Sheng Bin, Feng David Dagan

机构信息

Furong Laboratory, Central South University, Changsha, 410012 Hunan China.

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.

出版信息

J Healthc Inform Res. 2024 May 28;8(3):478-505. doi: 10.1007/s41666-024-00167-4. eCollection 2024 Sep.

Abstract

Understanding and addressing the dynamics of infectious diseases, such as coronavirus disease 2019, are essential for effectively managing the current situation and developing intervention strategies. Epidemiologists commonly use mathematical models, known as epidemiological equations (EE), to simulate disease spread. However, accurately estimating the parameters of these models can be challenging due to factors like variations in social distancing policies and intervention strategies. In this study, we propose a novel method called deep dynamic epidemiological modeling (DDE) to address these challenges. The DDE method combines the strengths of EE with the capabilities of deep neural networks to improve the accuracy of fitting real-world data. In DDE, we apply neural ordinary differential equations to solve variant-specific equations, ensuring a more precise fit for disease progression in different geographic regions. In the experiment, we tested the performance of the DDE method and other state-of-the-art methods using real-world data from five diverse geographic entities: the USA, Colombia, South Africa, Wuhan in China, and Piedmont in Italy. Compared to the state-of-the-art method, DDE significantly improved accuracy, with an average fitting Pearson coefficient exceeding 0.97 across the five geographic entities. In summary, the DDE method enhances the accuracy of parameter fitting in epidemiological models and provides a foundation for constructing simpler models adaptable to different geographic areas.

摘要

了解并应对传染病动态,如2019冠状病毒病,对于有效管理当前局势和制定干预策略至关重要。流行病学家通常使用称为流行病学方程(EE)的数学模型来模拟疾病传播。然而,由于社交距离政策和干预策略的变化等因素,准确估计这些模型的参数可能具有挑战性。在本研究中,我们提出了一种名为深度动态流行病学建模(DDE)的新方法来应对这些挑战。DDE方法将EE的优势与深度神经网络的能力相结合,以提高拟合真实世界数据的准确性。在DDE中,我们应用神经常微分方程来求解特定变体的方程,确保更精确地拟合不同地理区域的疾病进展。在实验中,我们使用来自五个不同地理区域的真实世界数据测试了DDE方法和其他现有最先进方法的性能:美国、哥伦比亚、南非、中国武汉和意大利皮埃蒙特。与现有最先进方法相比,DDE显著提高了准确性,在这五个地理区域中平均拟合皮尔逊系数超过0.97。总之,DDE方法提高了流行病学模型中参数拟合的准确性,并为构建适用于不同地理区域的更简单模型奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索