Skinner Dominic J, Lemaire Patrick, Mani Madhav
Center for Computational Biology, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA.
NSF-Simons Center for Quantitative Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
bioRxiv. 2024 Aug 4:2024.07.26.605398. doi: 10.1101/2024.07.26.605398.
Starting from one totipotent cell, complex multicellular organisms form through a series of differentiation and morphogenetic events, culminating in a multitude of cell types arranged in a functional and intricate spatial pattern. To do so, cells coordinate with each other, resulting in dynamics which follow a precise developmental trajectory, constraining the space of possible embryo-to-embryo variation. Using recent single-cell sequencing data of early ascidian embryos, we leverage natural variation together with modeling and inference techniques from statistical physics to investigate development at the level of a complete interconnected embryo - an embryonic transcriptome. After developing a robust and biophysically motivated approach to identifying distinct transcriptomic states or cell types, a statistical analysis reveals correlations within embryos and across cell types demonstrating the presence of collective variation. From these intra-embryo correlations, we infer minimal networks of cell-cell interactions, which reveal the collective modes of gene expression. Our work demonstrates how the existence and nature of spatial interactions along with the collective modes of expression that they give rise to can be inferred from single-cell gene expression measurements, opening up a wider range of biological questions that can be addressed using sequencing-based modalities.
从一个全能细胞开始,复杂的多细胞生物通过一系列分化和形态发生事件形成,最终形成多种细胞类型,这些细胞类型以功能复杂的空间模式排列。为此,细胞相互协调,产生遵循精确发育轨迹的动态变化,限制了胚胎间可能的变异空间。利用最近早期海鞘胚胎的单细胞测序数据,我们结合自然变异以及统计物理学的建模和推理技术,在完整的相互连接的胚胎——胚胎转录组水平上研究发育过程。在开发出一种强大的、基于生物物理学的方法来识别不同的转录组状态或细胞类型后,统计分析揭示了胚胎内和跨细胞类型的相关性,证明了集体变异的存在。从这些胚胎内相关性中,我们推断出细胞间相互作用的最小网络,这些网络揭示了基因表达的集体模式。我们的工作展示了如何从单细胞基因表达测量中推断空间相互作用的存在和性质,以及它们所引发的集体表达模式,从而开启了一系列可以使用基于测序的方法解决的更广泛的生物学问题。