Suppr超能文献

空间三维基因组组织在人类神经发生过程中控制双价染色质的活性。

Spatial 3D genome organization controls the activity of bivalent chromatin during human neurogenesis.

作者信息

Ahanger Sajad Hamid, Zhang Chujing, Semenza Evan R, Gil Eugene, Cole Mitchel A, Wang Li, Kriegstein Arnold R, Lim Daniel A

机构信息

Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

bioRxiv. 2024 Aug 1:2024.08.01.606248. doi: 10.1101/2024.08.01.606248.

Abstract

The nuclear genome is spatially organized into a three-dimensional (3D) architecture by physical association of large chromosomal domains with subnuclear compartments including the nuclear lamina at the radial periphery and nuclear speckles within the nucleoplasm. However, how spatial genome architecture regulates human brain development has been overlooked owing to technical limitations. Here, we generate high-resolution maps of genomic interactions with the lamina and speckles in cells of the neurogenic lineage isolated from midgestational human cortex, uncovering an intimate association between subnuclear genome compartmentalization, chromatin state and transcription. During cortical neurogenesis, spatial genome organization is extensively remodeled, relocating hundreds of neuronal genes from the lamina to speckles including key neurodevelopmental genes bivalent for H3K27me3 and H3K4me3. At the lamina, bivalent genes have exceptionally low expression, and relocation to speckles enhances resolution of bivalent chromatin to H3K4me3 and increases transcription >7-fold. We further demonstrate that proximity to the nuclear periphery - not the presence of H3K27me3 - is the dominant factor in maintaining the lowly expressed, poised state of bivalent genes embedded in the lamina. In addition to uncovering a critical role of subnuclear genome compartmentalization in neurogenic transcriptional regulation, our results establish a new paradigm in which knowing the spatial location of a gene is necessary to understanding its epigenomic regulation.

摘要

核基因组通过大型染色体结构域与亚核区室的物理关联在空间上组织成三维(3D)结构,这些亚核区室包括径向周边的核纤层和核质内的核斑。然而,由于技术限制,空间基因组结构如何调节人类大脑发育一直被忽视。在这里,我们生成了从妊娠中期人类皮质分离的神经源性谱系细胞中与核纤层和核斑的基因组相互作用的高分辨率图谱,揭示了亚核基因组区室化、染色质状态和转录之间的密切关联。在皮质神经发生过程中,空间基因组组织被广泛重塑,数百个神经元基因从核纤层重新定位到核斑,包括对H3K27me3和H3K4me3呈双价的关键神经发育基因。在核纤层,双价基因的表达极低,重新定位到核斑可提高双价染色质向H3K4me3的分辨率,并使转录增加7倍以上。我们进一步证明,靠近核周边——而非H3K27me3的存在——是维持嵌入核纤层的双价基因低表达、 poised状态的主导因素。除了揭示亚核基因组区室化在神经源性转录调控中的关键作用外,我们的结果还建立了一种新的范式,即了解基因的空间位置对于理解其表观基因组调控是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1102/11312588/eff27aeb9f45/nihpp-2024.08.01.606248v1-f0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验