Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia.
Nucleic Acids Res. 2024 Jun 24;52(11):6234-6252. doi: 10.1093/nar/gkae271.
Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.
染色质结构调控基因表达并塑造细胞特性,尤其是在神经元细胞中。具体来说,多梳抑制复合物(PcG)蛋白通过将染色质重新组织成抑制性结构域,限制了决定命运的基因的表达,从而维持神经元中独特的基因表达模式,从而实现神经元细胞类型的确立和维持。在这里,我们绘制了从四个人类大脑的韦尼克区分离出的神经元和非神经元细胞中的三维基因组结构,并全面分析了染色质组织的神经元特异性方面。我们发现,与其他脑细胞相比,神经元中的基因组被分离成活性和非活性区室的程度大大降低。此外,神经元 Hi-C 图谱显示出强烈的长距离相互作用,形成了神经元中特定的 PcG 介导的相互作用网络,而在其他脑细胞中几乎不存在。这些相互作用的基因座包含在神经元和其他成熟脑细胞中表达受抑制的发育转录因子。但只有在神经元中,它们富含二价启动子,这些启动子被 H3K4me3 组蛋白修饰与 H3K27me3 共同占据,这表明 PcG 相互作用在神经元中可能具有功能作用。重要的是,染色质组织的其他层次也表现出神经元中独特的结构,其特征是短距离相互作用增加和长距离相互作用减少。