Raghunathan Shampa
École Centrale School of Engineering, Mahindra University Hyderabad 500043 India
RSC Adv. 2024 Aug 9;14(34):25031-25041. doi: 10.1039/d4ra02576h. eCollection 2024 Aug 5.
In solvent-modulated protein folding, under certain physiological conditions, an equilibrium exists between the unfolded and folded states of the protein without any need to break or make a covalent bond. In this process, interactions between various protein groups (peptides) and solvent molecules are known to play a major role in determining the directionality of the chemical reaction. However, an understanding of the mechanism of action of the co(solvent) by a generic theoretical underpinning is lacking. In this study, a generic solvation model is developed based on statistical mechanics and the thermodynamic transfer free energy model by considering the microenvironment polarity of the interacting co(solvent)-protein system. According to this model, polarity and the fractional solvent-accessible surface areas contribute to the interaction energies. The present model includes various orientations of participating interactant solvent surfaces of suitable areas. As model systems, besides the backbone we consider naturally occurring amino acid residues solvated in ten different osmolytes, small organic compounds known to modulate protein stability. The present model is able to predict the correct trend of the osmolyte-peptide interactions ranging from stabilizing to destabilizing not only for the backbone but also for side chains. Our model predicts Asn, Gln, Asp, Glu, Arg and Pro to be highly stable in most of the protecting osmolytes while Ala, Val, Ile, Leu, Thr, Met, Lys, Phe, Trp and Tyr are predicted to be moderately stable, and Ser, Cys and Histidine are predicted to be least stable. However, in denaturing solvents, both backbone and side chain models show similar stabilities in urea and guanidine. One of the important aspects of this model is that it is essentially parameter-free and consistent with the electrostatics of the interaction partners that make this model suitable for estimating any solute-solvent interaction energies.
在溶剂调节的蛋白质折叠过程中,在某些生理条件下,蛋白质的未折叠态和折叠态之间存在平衡,无需断裂或形成共价键。在这个过程中,各种蛋白质基团(肽段)与溶剂分子之间的相互作用在决定化学反应的方向性方面起着主要作用。然而,目前缺乏一个通用的理论基础来理解共溶剂的作用机制。在本研究中,基于统计力学和热力学转移自由能模型,通过考虑相互作用的共溶剂 - 蛋白质系统的微环境极性,开发了一个通用的溶剂化模型。根据该模型,极性和溶剂可及表面积分数对相互作用能有贡献。本模型包括具有合适面积的参与相互作用的溶剂表面的各种取向。作为模型系统,除了主链外,我们还考虑了溶解在十种不同渗透剂中的天然氨基酸残基,这些小分子有机化合物已知可调节蛋白质稳定性。本模型不仅能够预测渗透剂 - 肽相互作用从稳定到不稳定的正确趋势,不仅适用于主链,也适用于侧链。我们的模型预测,在大多数保护性渗透剂中,天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸、精氨酸和脯氨酸高度稳定,而丙氨酸、缬氨酸、异亮氨酸、亮氨酸、苏氨酸、甲硫氨酸、赖氨酸、苯丙氨酸、色氨酸和酪氨酸预计中等稳定,丝氨酸、半胱氨酸和组氨酸预计最不稳定。然而,在变性溶剂中,主链和侧链模型在尿素和胍中表现出相似的稳定性。该模型的一个重要方面是它基本上无参数,并且与相互作用伙伴的静电学一致,这使得该模型适用于估计任何溶质 - 溶剂相互作用能。