文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖、银纳米颗粒和埃洛石纳米管三维抗菌纳米复合海绵的研制与表征

Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes.

作者信息

Hernández-Rangel A, Silva-Bermudez P, Almaguer-Flores A, García V I, Esparza R, Luna-Bárcenas G, Velasquillo C

机构信息

Instituto Politécnico Nacional, ESIQIE Av. IPN S/N Zacatenco Mexico City 07738 Mexico

Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico

出版信息

RSC Adv. 2024 Aug 9;14(34):24910-24927. doi: 10.1039/d4ra04274c. eCollection 2024 Aug 5.


DOI:10.1039/d4ra04274c
PMID:39131504
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11310750/
Abstract

In this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution a CTS-mediated reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges). Morphology analysis showed that synthesized AgNPs were spherical with an average diameter of 11 nm. HNTs' presence did not affect the AgNPs morphology or size but improved the mechanical properties of the scaffolds, where CTS-HNT sponges exhibited a 5 times larger compression stress than bare-CTS sponges. AgNPs in the scaffolds further increased their mechanical strength in correlation to the AgNP concentration, and conferred them improved antibacterial activity against Gram-negative and Gram-positive bacteria, inhibiting the planktonic proliferation and adhesion of bacteria in a AgNP concentration depending on manner. cell viability and immunofluorescence assays exhibited that human fibroblast (HF) culture was supported by the sponges, where HF retained their phenotype upon culture on the sponges. Present CTS-HNT-AgNP sponges showed promising mechanical, antibacterial and cytocompatibility properties to be used as potential scaffolds for wound dressing applications.

摘要

在这项工作中,我们开发了由壳聚糖(CTS)、埃洛石纳米管(HNTs)和银纳米颗粒(AgNPs)组成的新型纳米复合三维(3D)支架,其具有增强的抗菌活性和成纤维细胞相容性,有望用于伤口敷料应用。通过将水分散的HNTs与CTS酸水溶液混合获得CTS-HNT储备溶液,然后,采用CTS介导的还原法在CTS-HNT溶液中合成不同浓度的AgNPs。最后,通过冷冻凝胶化获得CTS-HNT-AgNP 3D多孔支架(海绵)。形态分析表明,合成的AgNPs呈球形,平均直径为11 nm。HNTs的存在不影响AgNPs的形态或尺寸,但改善了支架的机械性能,其中CTS-HNT海绵的压缩应力比纯CTS海绵大5倍。支架中的AgNPs进一步提高了其机械强度,且与AgNP浓度相关,并赋予它们对革兰氏阴性菌和革兰氏阳性菌更好的抗菌活性,以AgNP浓度依赖的方式抑制细菌的浮游增殖和粘附。细胞活力和免疫荧光测定表明,海绵支持人成纤维细胞(HF)培养,HF在海绵上培养时保持其表型。目前的CTS-HNT-AgNP海绵表现出有前景的机械、抗菌和细胞相容性特性,可作为伤口敷料应用的潜在支架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/40e70d50f2f2/d4ra04274c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/345c6802f110/d4ra04274c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/21b804480718/d4ra04274c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/5501fa017649/d4ra04274c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/214317545522/d4ra04274c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/753b30e470cf/d4ra04274c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/4cdc929cd654/d4ra04274c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/be1fa4c78047/d4ra04274c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/1fd3ada6f1be/d4ra04274c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/e2de355376c3/d4ra04274c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/40e70d50f2f2/d4ra04274c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/345c6802f110/d4ra04274c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/21b804480718/d4ra04274c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/5501fa017649/d4ra04274c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/214317545522/d4ra04274c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/753b30e470cf/d4ra04274c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/4cdc929cd654/d4ra04274c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/be1fa4c78047/d4ra04274c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/1fd3ada6f1be/d4ra04274c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/e2de355376c3/d4ra04274c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c5/11310750/40e70d50f2f2/d4ra04274c-f10.jpg

相似文献

[1]
Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes.

RSC Adv. 2024-8-9

[2]
Fabrication and in vitro behavior of dual-function chitosan/silver nanocomposites for potential wound dressing applications.

Mater Sci Eng C Mater Biol Appl. 2018-10-3

[3]
Biopolymeric nanofibrous scaffolds of poly(3-hydroxybuthyrate)/chitosan loaded with biogenic silver nanoparticle synthesized using curcumin and their antibacterial activities.

Int J Biol Macromol. 2024-1

[4]
Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering.

J Mater Chem B. 2013-4-21

[5]
Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

Int J Biol Macromol. 2013-11

[6]
Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing.

Mater Sci Eng C Mater Biol Appl. 2018-3-1

[7]
Construction of chitosan/Ag nanocomposite sponges and their properties.

Int J Biol Macromol. 2021-12-1

[8]
The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

J Biomed Mater Res B Appl Biomater. 2016-5-24

[9]
Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells.

Colloids Surf B Biointerfaces. 2018-9-20

[10]
Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.

J Biomed Mater Res A. 2018-1-23

本文引用的文献

[1]
The wound microbiota: microbial mechanisms of impaired wound healing and infection.

Nat Rev Microbiol. 2024-8

[2]
Enhanced physiochemical, antibacterial, and hemostatic performance of collagen-quaternized chitosan-graphene oxide sponges for promoting infectious wound healing.

Int J Biol Macromol. 2024-5

[3]
A Two-Step Surface Modification Methodology for the Advanced Protection of a Stone Surface.

Nanomaterials (Basel). 2023-12-26

[4]
An antibacterial nanoclay- and chitosan-based quad composite with controlled drug release for infected skin wound healing.

Carbohydr Polym. 2024-1-15

[5]
Chitosan-based hydrogel wound dressing: From mechanism to applications, a review.

Int J Biol Macromol. 2023-7-31

[6]
Evaluation of the effects of halloysite nanotube on polyhydroxybutyrate - chitosan electrospun scaffolds for cartilage tissue engineering applications.

Int J Biol Macromol. 2023-4-1

[7]
Antifungal Activity of Mycogenic Silver Nanoparticles on Clinical Yeasts and Phytopathogens.

Antibiotics (Basel). 2023-1-5

[8]
XPS, structural and antimicrobial studies of novel functionalized halloysite nanotubes.

Sci Rep. 2022-12-14

[9]
The Use of Metallic Nanoparticles in Wound Healing: New Perspectives.

Int J Mol Sci. 2022-12-6

[10]
Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects.

Carbohydr Polym. 2022-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索