Centre for Multidisciplinary Research on Religion and Society (CRS), Uppsala University, Uppsala, Sweden.
Department of Communication and Media, Lund University, Lund, 221 00, Sweden.
F1000Res. 2024 Apr 23;13:328. doi: 10.12688/f1000research.147107.1. eCollection 2024.
Identifying hate speech (HS) is a central concern within online contexts. Current methods are insufficient for efficient preemptive HS identification. In this study, we present the results of an analysis of automatic HS identification applied to popular alt-right YouTube videos.
This essay describes methodological challenges of automatic HS detection. The case study concerns data on a formative segment of contemporary radical right discourse. Our purpose is twofold. (1) To outline an interdisciplinary mixed-methods approach for using automated identification of HS. This bridges the gap between technical research on the one hand (such as machine learning, deep learning, and natural language processing, NLP) and traditional empirical research on the other. Regarding alt-right discourse and HS, we ask: (2) What are the challenges in identifying HS in popular alt-right YouTube videos?
The results indicate that effective and consistent identification of HS communication necessitates qualitative interventions to avoid arbitrary or misleading applications. Binary approaches of hate/non-hate speech tend to force the rationale for designating content as HS. A context-sensitive qualitative approach can remedy this by bringing into focus the indirect character of these communications. The results should interest researchers within social sciences and the humanities adopting automatic sentiment analysis and for those analysing HS and radical right discourse.
Automatic identification or moderation of HS cannot account for an evolving context of indirect signification. This study exemplifies a process whereby automatic hate speech identification could be utilised effectively. Several methodological steps are needed for a useful outcome, with both technical quantitative processing and qualitative analysis being vital to achieve meaningful results. With regard to the alt-right YouTube material, the main challenge is indirect framing. Identification demands orientation in the broader discursive context and the adaptation towards indirect expressions renders moderation and suppression ethically and legally precarious.
在网络环境中,识别仇恨言论(HS)是一个核心关注点。目前的方法不足以进行有效的预防性 HS 识别。在这项研究中,我们展示了应用于流行的另类右翼 YouTube 视频的自动 HS 识别分析结果。
本文描述了自动 HS 检测的方法学挑战。该案例研究涉及当代激进右翼话语形成阶段的数据。我们的目的有两个。(1)概述一种跨学科的混合方法,用于使用自动化 HS 识别。这弥补了一方面的技术研究(如机器学习、深度学习和自然语言处理(NLP))和另一方面的传统实证研究之间的差距。关于另类右翼话语和 HS,我们问:(2)在流行的另类右翼 YouTube 视频中识别 HS 有哪些挑战?
结果表明,有效和一致地识别 HS 通信需要进行定性干预,以避免任意或误导性的应用。仇恨/非仇恨言论的二元方法往往会迫使将内容指定为 HS 的理由。上下文敏感的定性方法可以通过将这些通信的间接特征作为焦点来纠正这一点。结果应该引起社会科学和人文学科中采用自动情感分析的研究人员以及分析 HS 和激进右翼话语的研究人员的兴趣。
自动识别或调解 HS 无法说明间接意义不断发展的背景。本研究举例说明了一种可以有效利用自动仇恨言论识别的过程。为了获得有用的结果,需要采取几个方法步骤,技术定量处理和定性分析都是必不可少的,以获得有意义的结果。就另类右翼 YouTube 材料而言,主要挑战是间接框架。识别需要在更广泛的话语背景中定位,并且对间接表达的适应使得监管和抑制在道德和法律上变得不稳定。