Suppr超能文献

自动识别仇恨言论 - 以 alt-Right 油管视频为例的研究

Automatic Identification of Hate Speech - A Case-Study of alt-Right YouTube Videos.

机构信息

Centre for Multidisciplinary Research on Religion and Society (CRS), Uppsala University, Uppsala, Sweden.

Department of Communication and Media, Lund University, Lund, 221 00, Sweden.

出版信息

F1000Res. 2024 Apr 23;13:328. doi: 10.12688/f1000research.147107.1. eCollection 2024.

Abstract

BACKGROUND

Identifying hate speech (HS) is a central concern within online contexts. Current methods are insufficient for efficient preemptive HS identification. In this study, we present the results of an analysis of automatic HS identification applied to popular alt-right YouTube videos.

METHODS

This essay describes methodological challenges of automatic HS detection. The case study concerns data on a formative segment of contemporary radical right discourse. Our purpose is twofold. (1) To outline an interdisciplinary mixed-methods approach for using automated identification of HS. This bridges the gap between technical research on the one hand (such as machine learning, deep learning, and natural language processing, NLP) and traditional empirical research on the other. Regarding alt-right discourse and HS, we ask: (2) What are the challenges in identifying HS in popular alt-right YouTube videos?

RESULTS

The results indicate that effective and consistent identification of HS communication necessitates qualitative interventions to avoid arbitrary or misleading applications. Binary approaches of hate/non-hate speech tend to force the rationale for designating content as HS. A context-sensitive qualitative approach can remedy this by bringing into focus the indirect character of these communications. The results should interest researchers within social sciences and the humanities adopting automatic sentiment analysis and for those analysing HS and radical right discourse.

CONCLUSIONS

Automatic identification or moderation of HS cannot account for an evolving context of indirect signification. This study exemplifies a process whereby automatic hate speech identification could be utilised effectively. Several methodological steps are needed for a useful outcome, with both technical quantitative processing and qualitative analysis being vital to achieve meaningful results. With regard to the alt-right YouTube material, the main challenge is indirect framing. Identification demands orientation in the broader discursive context and the adaptation towards indirect expressions renders moderation and suppression ethically and legally precarious.

摘要

背景

在网络环境中,识别仇恨言论(HS)是一个核心关注点。目前的方法不足以进行有效的预防性 HS 识别。在这项研究中,我们展示了应用于流行的另类右翼 YouTube 视频的自动 HS 识别分析结果。

方法

本文描述了自动 HS 检测的方法学挑战。该案例研究涉及当代激进右翼话语形成阶段的数据。我们的目的有两个。(1)概述一种跨学科的混合方法,用于使用自动化 HS 识别。这弥补了一方面的技术研究(如机器学习、深度学习和自然语言处理(NLP))和另一方面的传统实证研究之间的差距。关于另类右翼话语和 HS,我们问:(2)在流行的另类右翼 YouTube 视频中识别 HS 有哪些挑战?

结果

结果表明,有效和一致地识别 HS 通信需要进行定性干预,以避免任意或误导性的应用。仇恨/非仇恨言论的二元方法往往会迫使将内容指定为 HS 的理由。上下文敏感的定性方法可以通过将这些通信的间接特征作为焦点来纠正这一点。结果应该引起社会科学和人文学科中采用自动情感分析的研究人员以及分析 HS 和激进右翼话语的研究人员的兴趣。

结论

自动识别或调解 HS 无法说明间接意义不断发展的背景。本研究举例说明了一种可以有效利用自动仇恨言论识别的过程。为了获得有用的结果,需要采取几个方法步骤,技术定量处理和定性分析都是必不可少的,以获得有意义的结果。就另类右翼 YouTube 材料而言,主要挑战是间接框架。识别需要在更广泛的话语背景中定位,并且对间接表达的适应使得监管和抑制在道德和法律上变得不稳定。

相似文献

4
Hate speech detection: Challenges and solutions.仇恨言论检测:挑战与解决方案。
PLoS One. 2019 Aug 20;14(8):e0221152. doi: 10.1371/journal.pone.0221152. eCollection 2019.
6
Is hate speech detection the solution the world wants?仇恨言论检测是世界所需要的解决方案吗?
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2209384120. doi: 10.1073/pnas.2209384120. Epub 2023 Feb 27.
8
Cross-lingual hate speech detection using domain-specific word embeddings.跨语言仇恨言论检测使用领域特定的词嵌入。
PLoS One. 2024 Jul 30;19(7):e0306521. doi: 10.1371/journal.pone.0306521. eCollection 2024.
10
Retweet communities reveal the main sources of hate speech.转发社区揭示了仇恨言论的主要来源。
PLoS One. 2022 Mar 17;17(3):e0265602. doi: 10.1371/journal.pone.0265602. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验