Canfield Peter J, Reimers Jeffrey R, Crossley Maxwell J
School of Chemistry, The University of Sydney, NSW 2006, Australia.
International Center for Quantum and Molecular Structures and the School of Physics, Shanghai University, Shanghai 200444, China.
ACS Org Inorg Au. 2024 Mar 27;4(4):356-372. doi: 10.1021/acsorginorgau.4c00005. eCollection 2024 Aug 7.
The term "polytopal rearrangement" describes any shape changing process operating on a coordination "polyhedron"-the solid figure defined by the positions of the ligand atoms directly attached to the central atom of a coordination entity. Developed in the latter third of the last century, the polytopal rearrangement model of stereoisomerization is a general mathematical approach for analyzing and accommodating the complexity of such processes for any coordination number. The motivation for the model was principally to deal with the complexity, such as Berry pseudorotation in pentavalent phosphorus species, arising from rearrangements in inorganic coordination complexes of higher coordination numbers. The model is also applicable to lower coordination centers, for example, thermal "inversion" at nitrogen in NH and amines. We present the history of the model focusing on its essential features, and review some of the more subtle aspects addressed in recent literature. We then introduce a more detailed and rigorous modern approach for describing such processes using an assembly of existing concepts, with the addition of formally described terminology and representations. In our outlook, we contend that the rigorous and exhaustive application of the principles of the polytopal rearrangement model, when combined with torsional isomerism, will provide a basis for a mathematically complete, general, and systematic classification for all stereoisomerism and stereoisomerization. This is essential for comprehensively mapping chemical structure and reaction spaces.
“多面体重排”一词描述了作用于配位“多面体”的任何形状变化过程,配位“多面体”是由直接连接到配位实体中心原子的配体原子位置所定义的立体图形。立体异构化的多面体重排模型是在上个世纪后三分之一时期发展起来的,它是一种通用的数学方法,用于分析和处理任何配位数下此类过程的复杂性。该模型的主要动机是应对高配位数无机配位络合物重排所产生的复杂性,比如五价磷物种中的贝里假旋转。该模型也适用于低配位中心,例如NH和胺类中氮的热“反转”。我们介绍该模型的历史,重点关注其基本特征,并回顾近期文献中涉及的一些更细微的方面。然后,我们引入一种更详细、更严谨的现代方法,使用现有的概念组合来描述此类过程,并添加形式化描述的术语和表示法。在展望部分,我们认为,多面体重排模型的原理与扭转异构现象相结合,进行严格且详尽的应用,将为所有立体异构和立体异构化提供一个数学上完整、通用且系统的分类基础。这对于全面绘制化学结构和反应空间至关重要。