Azril Azril, Huang Kuo-Yuan, Liu Hsin-Yi, Liao Wei-An, Liu Wen-Lung, Hobley Jonathan, Jeng Yeau-Ren
Department of Biomedical Engineering National Cheng Kung University Tainan City Taiwan.
Department of Orthopedics National Cheng Kung University Hospital, College of Medicine Tainan City Taiwan.
JOR Spine. 2024 Aug 9;7(3):e1365. doi: 10.1002/jsp2.1365. eCollection 2024 Sep.
The ligamentum flavum (LF) degeneration is a critical factor in spinal stenosis, leading to nerve compression and pain. Even with new treatment options becoming available, it is vital to have a better understanding of LF degeneration to ensure the effectiveness of these treatments.
This study aimed to provide insight into LF degeneration by examining the connections between various aspects of LF degeneration, including histology, microstructure, chemical composition, and biomechanics.
We analyzed 30 LF samples from 27 patients with lumbar vertebrae, employing magnetic resonance imaging (MRI) to link lumbar disc degeneration grades with fibrosis levels in the tissue. X-ray diffraction (XRD) analysis assessed microstructural alterations in the LF matrix component due to degeneration progression. Instrumented nanoindentation combined with Raman spectroscopy explored the spatial microbiomechanical and biochemical characteristics of the LF's ventral and dorsal regions.
Our outcomes revealed a clear association between the severity of LF fibrosis grades and increasing LF thickness. XRD analysis showed a rise in crystalline components and hydroxyapatite molecules with progressing degeneration. Raman spectroscopy detected changes in the ratio of phosphate, proteoglycan, and proline/hydroxyproline over the amide I band, indicating alterations in the extracellular matrix composition. Biomechanical testing demonstrated that LF tissue becomes stiffer and less extensible with increasing fibrosis.
Notably, the micro-spatial assessment revealed the dorsal side of the LF experiencing more significant mechanical stress, alongside more pronounced biochemical and biomechanical changes compared to the ventral side. Degeneration of the LF involves complex processes that affect tissue histology, chemical composition, and biomechanics. It is crucial to fully understand these changes to develop new and effective treatments for spinal stenosis. These findings can improve diagnostic accuracy, identify potential biomarkers and treatment targets, guide personalized treatment strategies, advance tissue engineering approaches, help make informed clinical decisions, and educate patients about LF degeneration.
黄韧带(LF)退变是导致椎管狭窄的关键因素,可引起神经受压和疼痛。尽管有新的治疗方法可供选择,但深入了解LF退变对于确保这些治疗的有效性至关重要。
本研究旨在通过研究LF退变的各个方面之间的联系,包括组织学、微观结构、化学成分和生物力学,来深入了解LF退变。
我们分析了27例腰椎患者的30个LF样本,采用磁共振成像(MRI)将腰椎间盘退变程度与组织中的纤维化水平联系起来。X射线衍射(XRD)分析评估了由于退变进展导致的LF基质成分的微观结构变化。仪器化纳米压痕结合拉曼光谱研究了LF腹侧和背侧区域的空间微生物力学和生化特征。
我们的结果显示,LF纤维化程度的严重程度与LF厚度增加之间存在明显关联。XRD分析表明,随着退变进展,晶体成分和羟基磷灰石分子增加。拉曼光谱检测到磷酸盐、蛋白聚糖和脯氨酸/羟脯氨酸与酰胺I带的比例变化,表明细胞外基质成分发生改变。生物力学测试表明,随着纤维化增加,LF组织变得更硬且伸展性更小。
值得注意的是,微观空间评估显示,与腹侧相比,LF的背侧承受更显著的机械应力,同时伴有更明显的生化和生物力学变化。LF退变涉及影响组织结构学、化学成分和生物力学的复杂过程。全面了解这些变化对于开发新的有效治疗椎管狭窄的方法至关重要。这些发现可以提高诊断准确性、识别潜在的生物标志物和治疗靶点、指导个性化治疗策略、推进组织工程方法、帮助做出明智的临床决策以及对患者进行LF退变方面的教育。