Suppr超能文献

一个基于叶片年龄的光利用效率模型,用于遥感泛热带常绿阔叶林的总初级生产力季节性。

A leaf age-dependent light use efficiency model for remote sensing the gross primary productivity seasonality over pantropical evergreen broadleaved forests.

机构信息

Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.

出版信息

Glob Chang Biol. 2024 Aug;30(8):e17454. doi: 10.1111/gcb.17454.

Abstract

Tropical and subtropical evergreen broadleaved forests (TEFs) contribute more than one-third of terrestrial gross primary productivity (GPP). However, the continental-scale leaf phenology-photosynthesis nexus over TEFs is still poorly understood to date. This knowledge gap hinders most light use efficiency (LUE) models from accurately simulating the GPP seasonality in TEFs. Leaf age is the crucial plant trait to link the dynamics of leaf phenology with GPP seasonality. Thus, here we incorporated the seasonal leaf area index of different leaf age cohorts into a widely used LUE model (i.e., EC-LUE) and proposed a novel leaf age-dependent LUE model (denoted as LA-LUE model). At the site level, the LA-LUE model (average R = .59, average root-mean-square error [RMSE] = 1.23 gC m day) performs better than the EC-LUE model in simulating the GPP seasonality across the nine TEFs sites (average R = .18; average RMSE = 1.87 gC m day). At the continental scale, the monthly GPP estimates from the LA-LUE model are consistent with FLUXCOM GPP data (R = .80; average RMSE = 1.74 gC m day), and satellite-based GPP data retrieved from the global Orbiting Carbon Observatory-2 (OCO-2) based solar-induced chlorophyll fluorescence (SIF) product (GOSIF) (R = .64; average RMSE = 1.90 gC m day) and the reconstructed TROPOspheric Monitoring Instrument SIF dataset using machine learning algorithms (RTSIF) (R = .78; average RMSE = 1.88 gC m day). Typically, the estimated monthly GPP not only successfully represents the unimodal GPP seasonality near the Tropics of Cancer and Capricorn, but also captures well the bimodal GPP seasonality near the Equator. Overall, this study for the first time integrates the leaf age information into the satellite-based LUE model and provides a feasible implementation for mapping the continental-scale GPP seasonality over the entire TEFs.

摘要

热带和亚热带常绿阔叶林(TEFs)贡献了超过三分之一的陆地总初级生产力(GPP)。然而,迄今为止,人们对 TEFs 大陆尺度的叶片物候-光合作用关系仍知之甚少。这一知识空白阻碍了大多数光能利用效率(LUE)模型准确模拟 TEFs 中 GPP 的季节性。叶片年龄是将叶片物候动态与 GPP 季节性联系起来的关键植物特征。因此,在这里,我们将不同叶片年龄组的季节性叶面积指数纳入到一个广泛使用的 LUE 模型(即 EC-LUE)中,并提出了一个新的叶片年龄依赖的 LUE 模型(记为 LA-LUE 模型)。在站点水平上,LA-LUE 模型(平均 R = 0.59,平均均方根误差 [RMSE] = 1.23 gC m day)在模拟九个 TEFs 站点的 GPP 季节性方面表现优于 EC-LUE 模型(平均 R = 0.18;平均 RMSE = 1.87 gC m day)。在大陆尺度上,LA-LUE 模型的月度 GPP 估算与 FLUXCOM GPP 数据一致(R = 0.80;平均 RMSE = 1.74 gC m day),并与基于卫星的全球轨道碳观测站-2(OCO-2)基于太阳诱导叶绿素荧光(SIF)产品(GOSIF)的 GPP 数据(R = 0.64;平均 RMSE = 1.90 gC m day)以及使用机器学习算法重建的热带监测仪器 SIF 数据集(RTSIF)(R = 0.78;平均 RMSE = 1.88 gC m day)。通常,估算的月度 GPP 不仅成功地表示了北回归线和南回归线附近的单峰 GPP 季节性,而且还很好地捕捉了赤道附近的双峰 GPP 季节性。总体而言,本研究首次将叶片年龄信息纳入基于卫星的 LUE 模型,并为绘制整个 TEFs 大陆尺度 GPP 季节性提供了一种可行的实现方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验