Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China.
Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China.
Aging (Albany NY). 2024 Aug 9;16(15):11577-11590. doi: 10.18632/aging.206026.
Acute ischemic stroke presents significant challenges in healthcare, notably due to the risk and poor prognosis associated with hemorrhagic transformation (HT). Currently, there is a notable gap in the early clinical stage for a valid and reliable predictive model for HT.
This single-center retrospective study analyzed data from 224 patients with acute ischemic stroke due to large vessel occlusion. We collected comprehensive clinical data, CT, and CTP parameters. A predictive model for HT was developed, incorporating clinical indicators alongside imaging data, and its efficacy was evaluated using decision curve analysis and calibration curves. In addition, we have also built a free browser-based online calculator based on this model for HT prediction.
The study identified atrial fibrillation and hypertension as significant risk factors for HT. Patients with HT showed more extensive initial ischemic damage and a smaller ischemic penumbra. Our novel predictive model, integrating clinical indicators with CT and CTP parameters, demonstrated superior predictive value compared to models based solely on clinical indicators.
The research highlighted the intricate interplay of clinical and imaging parameters in HT post-thrombectomy. It established a multifaceted predictive model, enhancing the understanding and management of acute ischemic stroke. Future studies should focus on validating this model in broader cohorts, further investigating the causal relationships, and exploring the nuanced effects of these parameters on patient outcomes post-stroke.
急性缺血性脑卒中在医疗保健方面带来了重大挑战,特别是由于出血性转化(HT)相关的风险和预后不良。目前,在 HT 的早期临床阶段,缺乏有效且可靠的预测模型。
这是一项单中心回顾性研究,分析了 224 例因大血管闭塞导致的急性缺血性脑卒中患者的数据。我们收集了全面的临床数据、CT 和 CTP 参数。建立了一个 HT 的预测模型,该模型将临床指标与影像学数据相结合,并通过决策曲线分析和校准曲线评估其效能。此外,我们还基于该模型构建了一个免费的基于浏览器的在线 HT 预测计算器。
研究发现房颤和高血压是 HT 的显著危险因素。HT 患者的初始缺血性损伤更广泛,缺血半暗带更小。我们的新型预测模型,将临床指标与 CT 和 CTP 参数相结合,与仅基于临床指标的模型相比,具有更高的预测价值。
该研究强调了临床和影像学参数在血栓切除术后 HT 中的复杂相互作用。它建立了一个多方面的预测模型,有助于加深对急性缺血性脑卒中的理解和管理。未来的研究应在更广泛的队列中验证该模型,进一步探讨这些参数与患者卒中后转归的因果关系,并探索这些参数的细微影响。