Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907.
ACS Appl Mater Interfaces. 2024 Aug 21;16(33):44152-44163. doi: 10.1021/acsami.4c05086. Epub 2024 Aug 12.
Designing surfaces that enable controlled presentation of multivalent ligand clusters (e.g., for rapid screening of biomolecular binding constants or design of artificial extracellular matrices) is a cross-cutting challenge in materials and interfacial chemistry. Existing approaches frequently rely on complex building blocks or scaffolds and are often specific to individual substrate chemistries. Thus, an interlayer chemistry that enabled efficient nanometer-scale patterning on a transferrable layer and subsequent integration with other classes of materials could substantially broaden the scope of surfaces available for sensors and wearable electronics. Recently, we have shown that it is possible to assemble nanometer-resolution chemical patterns on substrates including graphite, use diacetylene polymerization to lock the molecular pattern together, and then covalently transfer the pattern to amorphous materials (e.g., polydimethylsiloxane, PDMS), which would not natively enable high degrees of control over ligand presentation. Here, we develop a low-viscosity PDMS formulation that generates very thin films (<10 μm) with dense cross-linking, enabling high-efficiency surface functionalization with polydiacetylene arrays displaying carbohydrates and other functional groups (up to 10-fold greater than other soft materials we have used previously) on very thin films that can be integrated with other materials (e.g., glass and soft materials) to enable a highly controlled multivalent ligand display. We use swelling and other characterization methods to relate surface functionalization efficiency to the average distance between cross-links in the PDMS, developing design principles that can be used to create even thinner transfer layers. In the context of this work, we apply this approach using precision glycopolymers presenting structured arrays of -acetyl glucosamine ligands for lectin binding assays. More broadly, this interlayer approach lays groundwork for designing surface layers for the presentation of ligand clusters on soft materials for applications including wearable electronics and artificial extracellular matrix.
设计能够控制多价配体簇呈现的表面(例如,用于快速筛选生物分子结合常数或设计人工细胞外基质)是材料和界面化学中的一个交叉挑战。现有的方法通常依赖于复杂的构建块或支架,并且通常特定于单个基底化学。因此,一种夹层化学,如果能够在可转移层上进行高效的纳米级图案化,并随后与其他类别的材料集成,将大大拓宽可用于传感器和可穿戴电子设备的表面范围。最近,我们已经表明,可以在包括石墨在内的基底上组装纳米分辨率的化学图案,使用二乙炔聚合将分子图案锁定在一起,然后将图案共价转移到非晶材料(例如聚二甲基硅氧烷,PDMS)上,而 PDMS 本身无法实现对配体呈现的高度控制。在这里,我们开发了一种低粘度的 PDMS 配方,可生成非常薄的薄膜(<10μm),具有密集的交联,能够高效地对聚二乙炔阵列进行表面功能化,这些阵列显示出碳水化合物和其他官能团(比我们之前使用的其他软材料高 10 倍),薄膜非常薄,可以与其他材料(例如玻璃和软材料)集成,以实现高度可控的多价配体显示。我们使用溶胀和其他表征方法将表面功能化效率与 PDMS 中的交联平均距离相关联,开发了可以用于创建更薄的转移层的设计原则。在这项工作的背景下,我们使用呈现结构化的 -乙酰葡萄糖胺配体阵列的精密糖聚物来应用这种方法,用于凝集素结合测定。更广泛地说,这种夹层方法为在软材料上呈现配体簇的表面层设计奠定了基础,可用于包括可穿戴电子设备和人工细胞外基质在内的应用。