Wang Kai, Jinnai Seihou, Urakami Takumi, Sato Hirofumi, Higashi Masahiro, Tsujimura Sota, Kobori Yasuhiro, Adachi Rintaro, Yamakata Akira, Ie Yutaka
The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202412691. doi: 10.1002/anie.202412691. Epub 2024 Oct 15.
The development of nonfullerene acceptors (NFAs), represented by ITIC, has contributed to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). Although tuning the electronic structures to reduce the exciton binding energy (E) is considered to promote photocharge generation, a rational molecular design for NFAs has not been established. In this study, we designed and developed two ITIC-based NFAs bearing spiro-substituted bithiophene or biphenyl units (named SpiroT-DCI and SpiroF-DCI) to tune the frontier molecular orbital (FMO) distribution of NFAs. While the highest occupied molecular orbitals (HOMOs) of SpiroF-DCI and ITIC are delocalized in the main π-conjugated framework, the HOMO of SpiroT-DCI is distributed on the bithiophene unit. Reflecting this difference, SpiroT-DCI exhibits a smaller E than either SpiroF-DCI or ITIC, and exhibits greater external quantum efficiency in single-component OSCs. Furthermore, SpiroT-DCI shows improved PCEs for bulk-heterojunction OSCs with a donor of PBDB-T, compared with that of either SpiroT-DCI or ITIC. Time-resolved spectroscopy measurements show that the photo-induced intermolecular charge separation is effective even in pristine SpiroT-DCI films. This study highlights the introduction of spiro-substituted bithiophene units that are effective in tuning the FMOs of ITIC, which is desirable for reducing the E and improving the PCE in OSCs.
以ITIC为代表的非富勒烯受体(NFA)的发展,有助于提高有机太阳能电池(OSC)的功率转换效率(PCE)。尽管通过调整电子结构来降低激子结合能(E)被认为可以促进光生电荷的产生,但尚未建立起针对NFA的合理分子设计方法。在本研究中,我们设计并开发了两种基于ITIC的NFA,它们带有螺环取代的联噻吩或联苯单元(分别命名为SpiroT-DCI和SpiroF-DCI),以调整NFA的前沿分子轨道(FMO)分布。SpiroF-DCI和ITIC的最高占据分子轨道(HOMO)在主要的π共轭骨架中是离域的,而SpiroT-DCI的HOMO分布在联噻吩单元上。反映出这种差异,SpiroT-DCI的E比SpiroF-DCI或ITIC都小,并且在单组分OSC中表现出更高的外量子效率。此外,与SpiroF-DCI或ITIC相比,SpiroT-DCI与PBDB-T供体组成的体相异质结OSC的PCE有所提高。时间分辨光谱测量表明,即使在原始的SpiroT-DCI薄膜中,光诱导的分子间电荷分离也是有效的。本研究强调了引入螺环取代的联噻吩单元对调整ITIC的FMO是有效的,这对于降低E和提高OSC的PCE是有利的。