Suppr超能文献

人工智能驱动的胰腺炎成像创新:一项全面的文献综述

AI-powered innovations in pancreatitis imaging: a comprehensive literature synthesis.

作者信息

Maletz Sebastian, Balagurunathan Yoga, Murphy Kade, Folio Les, Chima Ranjit, Zaheer Atif, Vadvala Harshna

机构信息

University of South Florida Morsani College of Medicine, Tampa, USA.

Moffitt Cancer Center, Tampa, USA.

出版信息

Abdom Radiol (NY). 2025 Jan;50(1):438-452. doi: 10.1007/s00261-024-04512-4. Epub 2024 Aug 12.

Abstract

Early identification of pancreatitis remains a significant clinical diagnostic challenge that impacts patient outcomes. The evolution of quantitative imaging followed by deep learning models has shown great promise in the non-invasive diagnosis of pancreatitis and its complications. We provide an overview of advancements in diagnostic imaging and quantitative imaging methods along with the evolution of artificial intelligence (AI). In this article, we review the current and future states of methodology and limitations of AI in improving clinical support in the context of early detection and management of pancreatitis.

摘要

胰腺炎的早期识别仍然是一项重大的临床诊断挑战,会影响患者的治疗结果。定量成像技术的发展以及深度学习模型在胰腺炎及其并发症的无创诊断方面显示出了巨大的潜力。我们概述了诊断成像和定量成像方法的进展以及人工智能(AI)的发展。在本文中,我们回顾了人工智能在改善胰腺炎早期检测和管理背景下的临床支持方面的方法现状和未来发展以及局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验