Suppr超能文献

临床人工智能应用:乳腺成像。

Clinical Artificial Intelligence Applications: Breast Imaging.

机构信息

Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC2026, Chicago, IL 60637, USA.

Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC2026, Chicago, IL 60637, USA.

出版信息

Radiol Clin North Am. 2021 Nov;59(6):1027-1043. doi: 10.1016/j.rcl.2021.07.010.

Abstract

This article gives a brief overview of the development of artificial intelligence in clinical breast imaging. For multiple decades, artificial intelligence (AI) methods have been developed and translated for breast imaging tasks such as detection, diagnosis, and assessing response to therapy. As imaging modalities arise to support breast cancer screening programs and diagnostic examinations, including full-field digital mammography, breast tomosynthesis, ultrasound, and MRI, AI techniques parallel the efforts with more complex algorithms, faster computers, and larger data sets. AI methods include human-engineered radiomics algorithms and deep learning methods. Examples of these AI-supported clinical tasks are given along with commentary on the future.

摘要

本文简要概述了人工智能在临床乳房成像中的发展。几十年来,人工智能 (AI) 方法已经被开发出来并应用于乳房成像任务,如检测、诊断和评估治疗反应。随着成像方式的出现,以支持乳腺癌筛查计划和诊断检查,包括全数字化乳腺 X 线摄影、乳腺断层合成、超声和 MRI,人工智能技术与更复杂的算法、更快的计算机和更大的数据集一起发展。AI 方法包括人工设计的放射组学算法和深度学习方法。本文还给出了这些人工智能支持的临床任务的例子,并对未来进行了评论。

相似文献

1
Clinical Artificial Intelligence Applications: Breast Imaging.
Radiol Clin North Am. 2021 Nov;59(6):1027-1043. doi: 10.1016/j.rcl.2021.07.010.
2
Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence.
Can Assoc Radiol J. 2021 Feb;72(1):98-108. doi: 10.1177/0846537120949974. Epub 2020 Aug 31.
3
Applications of Artificial Intelligence in Breast Imaging.
Radiol Clin North Am. 2021 Jan;59(1):139-148. doi: 10.1016/j.rcl.2020.08.007.
4
A Review of Artificial Intelligence in Breast Imaging.
Tomography. 2024 May 9;10(5):705-726. doi: 10.3390/tomography10050055.
5
Artificial intelligence in digital breast pathology: Techniques and applications.
Breast. 2020 Feb;49:267-273. doi: 10.1016/j.breast.2019.12.007. Epub 2019 Dec 19.
6
Impact of AI for Digital Breast Tomosynthesis on Breast Cancer Detection and Interpretation Time.
Radiol Artif Intell. 2024 May;6(3):e230318. doi: 10.1148/ryai.230318.
9
Stand-alone artificial intelligence - The future of breast cancer screening?
Breast. 2020 Feb;49:254-260. doi: 10.1016/j.breast.2019.12.014. Epub 2020 Jan 2.
10
Artificial intelligence in the interpretation of breast cancer on MRI.
J Magn Reson Imaging. 2020 May;51(5):1310-1324. doi: 10.1002/jmri.26878. Epub 2019 Jul 25.

引用本文的文献

1
Artificial Intelligence and Early Detection of Breast, Lung, and Colon Cancer: A Narrative Review.
Cureus. 2025 Feb 18;17(2):e79199. doi: 10.7759/cureus.79199. eCollection 2025 Feb.
2
Role of AI in empowering and redefining the oncology care landscape: perspective from a developing nation.
Front Digit Health. 2025 Mar 4;7:1550407. doi: 10.3389/fdgth.2025.1550407. eCollection 2025.
3
The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography.
JMA J. 2025 Jan 15;8(1):91-101. doi: 10.31662/jmaj.2024-0183. Epub 2024 Sep 27.
4
Noninvasive Assessment of Vascular Endothelial Growth Factor and Prognosis in Gastric Cancer Through Radiomic Features.
Clin Transl Gastroenterol. 2025 Mar 1;16(3):e00802. doi: 10.14309/ctg.0000000000000802.
7
Artificial Intelligence in Breast Imaging: Opportunities, Challenges, and Legal-Ethical Considerations.
Eurasian J Med. 2023 Dec;55(1):114-119. doi: 10.5152/eurasianjmed.2023.23360.
8
AI-based automated segmentation for ovarian/adnexal masses and their internal components on ultrasound imaging.
J Med Imaging (Bellingham). 2024 Jul;11(4):044505. doi: 10.1117/1.JMI.11.4.044505. Epub 2024 Aug 6.
9
New Frontiers in Breast Cancer Imaging: The Rise of AI.
Bioengineering (Basel). 2024 May 2;11(5):451. doi: 10.3390/bioengineering11050451.
10
Artificial Intelligence in Senology - Where Do We Stand and What Are the Future Horizons?
Eur J Breast Health. 2024 Apr 1;20(2):73-80. doi: 10.4274/ejbh.galenos.2024.2023-12-13. eCollection 2024 Apr.

本文引用的文献

2
Comparison of Breast MRI Tumor Classification Using Human-Engineered Radiomics, Transfer Learning From Deep Convolutional Neural Networks, and Fusion Methods.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):163-177. doi: 10.1109/jproc.2019.2950187. Epub 2019 Nov 21.
3
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
4
An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization.
Med Image Anal. 2021 Feb;68:101908. doi: 10.1016/j.media.2020.101908. Epub 2020 Dec 16.
6
Artificial Intelligence Applied to Breast MRI for Improved Diagnosis.
Radiology. 2021 Jan;298(1):38-46. doi: 10.1148/radiol.2020200292. Epub 2020 Oct 20.
7
Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging.
J Med Imaging (Bellingham). 2020 Jul;7(4):044502. doi: 10.1117/1.JMI.7.4.044502. Epub 2020 Aug 24.
8
A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI.
Sci Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.
10
Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning.
Acad Radiol. 2021 Feb;28(2):e44-e53. doi: 10.1016/j.acra.2020.02.006. Epub 2020 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验