Suppr超能文献

基于实时坏死监测反馈的术中消融控制:数值评估。

Intraoperative Ablation Control Based on Real-Time Necrosis Monitoring Feedback: Numerical Evaluation.

机构信息

Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

, Ehime, Japan.

出版信息

Ann Biomed Eng. 2024 Dec;52(12):3312-3325. doi: 10.1007/s10439-024-03599-6. Epub 2024 Aug 12.

Abstract

Ablation therapy is a type of minimally invasive treatment, utilized for various organs including the brain, heart, and kidneys. The accuracy of the ablation process is critically important to avoid both insufficient and excessive ablation, which may result in compromised efficacy or complications. The thermal ablation is formulated by two theoretical models: the heat transfer (HT) and necrosis formation (NF) models. In modern medical practices, feed-forward (FF) and temperature feedback (TFB) controls are primarily used as ablation control methodologies. FF involves pre-therapy procedure planning based on previous experiences and theoretical knowledge without monitoring the intraoperative tissue response, hence, it can't compensate for discrepancies in the assumed HT or NF models. These discrepancies can arise due to individual patient's tissue characteristic differences and specific environmental conditions. Conversely, TFB control is based on the intraoperative temperature profile. It estimates the resulting heat damage based on the monitored temperature distribution and assumed NF model. Therefore, TFB can make necessary adjustments even if there is an error in the assumed HT model. TFB is thus seen as a more robust control method against modeling errors in the HT model. Still, TFB is limited as it assumes a fixed NF model, irrespective of the patient or the ablation technique used. An ideal solution to these limitations would be to actively monitor heat damage to the tissue during the operation and utilize this data to control ablation. This strategy is defined as necrosis feedback (NFB) in this study. Such real-time necrosis monitoring modalities making NFB possible are emerging, however, there is an absence of a generalized study that discusses the integration and quantifies the significance of the real-time necrosis monitor techniques for ablation therapy. Such an investigation is expected to clarify the universal principles of how these techniques would improve ablation therapy. In this study, we examine the potential of NFB in suppressing errors associated with the NF model as NFB is theoretically capable of monitoring and suppressing the errors associated with the NF models in its closed control loop. We simulate and compare the performances of TFB and NFB with artificially generated modeling errors using the finite element method (FEM). The results show that NFB provides more accurate ablation control than TFB when NF-oriented errors are applied, indicating NFB's potential to improve the ablation control accuracy and highlighting the value of the ongoing research to make real-time necrosis monitoring a clinically viable option.

摘要

消融疗法是一种微创治疗方法,适用于包括大脑、心脏和肾脏在内的各种器官。消融过程的准确性至关重要,以避免消融不足和过度,这可能导致疗效受损或出现并发症。热消融由两个理论模型制定:传热(HT)和坏死形成(NF)模型。在现代医学实践中,前馈(FF)和温度反馈(TFB)控制主要用作消融控制方法。FF 涉及基于以前的经验和理论知识的治疗前程序规划,而不监测术中组织反应,因此,它不能补偿假设的 HT 或 NF 模型中的差异。这些差异可能是由于个体患者的组织特征差异和特定环境条件引起的。相反,TFB 控制基于术中温度曲线。它根据监测到的温度分布和假设的 NF 模型来估计产生的热损伤。因此,即使在假设的 HT 模型中存在误差,TFB 也可以进行必要的调整。因此,TFB 被视为一种更强大的控制方法,可抵抗 HT 模型中的建模误差。尽管如此,TFB 仍然受到限制,因为它假设 NF 模型是固定的,而不考虑患者或使用的消融技术。解决这些限制的理想方法是在手术过程中主动监测组织的热损伤,并利用这些数据来控制消融。在这项研究中,这种策略被定义为坏死反馈(NFB)。能够实现 NFB 的实时坏死监测方法正在出现,但缺乏全面研究来讨论实时坏死监测技术在消融治疗中的整合和量化意义。这样的研究有望阐明这些技术如何提高消融治疗效果的普遍原理。在这项研究中,我们检查了 NFB 在抑制与 NF 模型相关的误差方面的潜力,因为 NFB 在其闭环控制中理论上能够监测和抑制与 NF 模型相关的误差。我们使用有限元方法(FEM)模拟和比较了使用人工生成的建模误差的 TFB 和 NFB 的性能。结果表明,当应用 NF 定向误差时,NFB 提供了比 TFB 更准确的消融控制,这表明 NFB 有潜力提高消融控制精度,并强调了正在进行的研究的价值,以使实时坏死监测成为一种可行的临床选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验