Wei Xiaobo, Zhang Xiutao, Chen Tianyu, Huang Jing, Li Ting, Zhang Xuhui, Wang Shibo, Dong Weifu
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
Chengde Technology Co., Ltd, 888 Century Avenue, Longgang City, Wenzhou 325802, China.
ACS Macro Lett. 2024 Sep 17;13(9):1112-1118. doi: 10.1021/acsmacrolett.4c00377. Epub 2024 Aug 12.
A robust and fully biobased covalent adaptable network (CAN) that allows recyclability, biocompatibility, and controlled biodegradability is reported. The CAN was fabricated through a simple photo-cross-linking method, wherein low-molecular-weight poly(lactic acid) (∼3 kDa) was modified with end 1,2-dithiolane rings through a one-step Steglich esterification reaction with thioctic acid (TA). These incorporated 1,2-dithiolane rings undergo photoinduced ring-opening polymerization, thus enabling the cross-linking of poly(lactic acid) with abundant dynamic disulfide bonds. The resultant CAN demonstrates excellent transparency, effective UV-blocking capabilities below 320 nm, robust tensile strength (∼39 MPa), and superior dimensional stability at 80 °C, alongside attractive biocompatibility. Moreover, owing to the dynamic exchange and redox-responsiveness of disulfide bonds, the material can be recycled by hot-pressing and a reduction-oxidation process while also being capable of controllably biodegrading at the end of its lifecycle. Furthermore, it exhibits reconfigurable shape memory properties with fast recovery. This study elucidates a straightforward approach to fabricating multifunctional and sustainable polymer materials with potential applications in diverse fields such as packaging, coating, and biomedicine.
据报道,一种坚固且完全基于生物基的共价自适应网络(CAN)具有可回收性、生物相容性和可控的生物降解性。该CAN通过简单的光交联方法制备,其中低分子量聚乳酸(约3 kDa)通过与硫辛酸(TA)的一步Steglich酯化反应,用末端1,2-二硫戊环进行改性。这些引入的1,2-二硫戊环发生光诱导开环聚合,从而实现聚乳酸与大量动态二硫键的交联。所得的CAN具有优异的透明度、在320 nm以下有效的紫外线阻挡能力、强大的拉伸强度(约39 MPa)以及在80°C时出色的尺寸稳定性,同时还具有吸引人的生物相容性。此外,由于二硫键的动态交换和氧化还原响应性,该材料可以通过热压和还原-氧化过程进行回收,同时在其生命周期结束时能够可控地生物降解。此外,它还具有快速恢复的可重构形状记忆特性。这项研究阐明了一种制造多功能和可持续聚合物材料的直接方法,这些材料在包装、涂层和生物医学等不同领域具有潜在应用。